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Abstract

Fashion-image editing is a challenging computer-vision task where the goal is to incorporate selected apparel

into a given input image. Most existing techniques, known as Virtual Try-On methods, deal with this

task by first selecting an example image of the desired apparel and then transferring the clothing onto

the target person. Conversely, in this paper, we consider editing fashion images with text descriptions.

Such an approach has several advantages over example-based virtual try-on techniques: (i) it does not

require an image of the target fashion item, and (ii) it allows the expression of a wide variety of visual

concepts through the use of natural language. Existing image-editing methods that work with language

inputs are heavily constrained by their requirement for training sets with rich attribute annotations or

they are only able to handle simple text descriptions. We address these constraints by proposing a novel

text-conditioned editing model called FICE (Fashion Image CLIP Editing) that is capable of handling

a wide variety of diverse text descriptions to guide the editing procedure. Specifically, with FICE, we

extend the common GAN-inversion process by including semantic, pose-related, and image-level constraints

when generating images. We leverage the capabilities of the CLIP model to enforce the text-provided

semantics, due to its impressive image–text association capabilities. We furthermore propose a latent-

code regularization technique that provides the means to better control the fidelity of the synthesized

images. We validate the FICE through rigorous experiments on a combination of VITON images and

Fashion-Gen text descriptions and in comparison with several state-of-the-art, text-conditioned, image-

editing approaches. Experimental results demonstrate that the FICE generates very realistic fashion images

and leads to better editing than existing, competing approaches. The source code is publicly available from:

https://github.com/MartinPernus/FICE.
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Preprint submitted to Pattern Recognition September 17, 2024



1. Introduction

Fashion-image editing refers to the task of changing the appearance of a person in a given image by

incorporating a desired fashion item (e.g., different apparel) in a realistic and visually convincing manner.

Successful applications of such algorithms enable users to visualize and virtually try-on items of clothing

from the comfort of their homes. This functionality has the potential to enable easier sales of online apparel,

reduce the costs for retailers, and reduce the environmental footprint of the fashion industry by minimizing

returns [1]. As a result, research has been directed towards fashion-image manipulation (or Virtual Try-On,

VTON) techniques that deliver convincing photorealistic editing results [2–5]. Furthermore, the method-

ologies and techniques developed in this sphere can have broader applicability; they can be adapted to tackle

other image-editing challenges, such as interior design for homes [6], cosmetic simulations [7], or historical

restorations [8]. Recent works in this field include various methods for 3D clothed-human reconstruction and

dynamic garment animation [9–16], which further enhance the realism and functionality of VTON systems.

VTON solutions have achieved great success in synthesizing photorealistic fashion images1 by building

on advances made in convolutional neural networks and adversarial training objectives [17–19]. Most of the

existing techniques in this area condition their editing models on example images of the target clothing,

which is typically warped and stitched onto the given input image. Considerably less attention has been

given to text-conditioned, fashion-image editing, despite the fact that such methods represent an attractive

alternative to example-based editing techniques. Leveraging natural language descriptions allows for a

more intuitive mechanism to drive the editing process, facilitating an easier interface for users to express

their preferences. Furthermore, users can articulate nuanced design specifications through natural language

inputs, without having to provide visual garment representations. While, to the best of our knowledge, only

a modest amount of work has been conducted on this topic so far, existing text-conditioned methods are

commonly limited to very basic descriptions, mostly due to the small size of the suitable training datasets

that are publicly available [20]. To mitigate these problems, some text-conditioned fashion works were

proposed to parse the input text into closed sets of categories [21] for easier text processing, simplifying the

task into a more basic, categorical problem.

Meanwhile, various image–text association models have emerged. These models are trained on hundreds

of millions of image–text pairs [22] and represent powerful tools for associating visual data and language

descriptions [23, 24]. As a result, they have been successfully deployed for text-conditioned image editing

in combination with recent state-of-the-art generative adversarial networks (GANs) [25]. Such solutions

typically first embed the given input image into the latent space of a pre-trained GAN model through a

process referred to as GAN inversion [26], and then perform text-conditioned manipulations in the latent

1While different definitions of the term fashion image can be found in the literature, we define it in this paper as an image

of a subject that is focused on accentuating fashion garments against a clean, uncluttered background.
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Figure 1: Fashion-image editing with language-based inputs. In this paper we propose FICE (Fashion

Image CLIP Editing), a text-conditioned image-editing model, capable of handling a wide variety of text

inputs with the goal of manipulating fashion images toward the desired target appearance.

space that eventually lead to semantically meaningful changes in the corresponding output images [25, 27,

28]. While general-purpose, text-conditioned, GAN-based editing techniques have shown success in various

settings, a straightforward application to the fashion domain is challenging and, more importantly, does not

guarantee optimal editing results. This is due to the inherent reconstruction–editability trade-off [29] of such

techniques, which typically results in a loss of identity information as well as pose changes when inverting an

image into a GAN latent code. Furthermore, despite the recent advances in disentangled editing in the GAN

latent space [25, 30], such methods are still problematic to use in the context of text-conditioned editing

due to the high sensitivity to hyperparameter choices [31].

In this paper we address these open challenges through the introduction of FICE (Fashion Image CLIP

Editing) – a novel text-conditioned, image-editing approach tailored towards fashion images. FICE in-

troduces a novel GAN-inversion framework, allowing for the integration of capabilities that enable text-

conditioned fashion-image editing. This stands in contrast to traditional VTON methods that rely heavily

on categorical attributes for editing, which often necessitates extensive data curation. Our approach sim-

plifies the editing process, enabling users to modify images using only text inputs and thereby removing

the complexities associated with the management and curation of additional categorical or visual data.

This streamlines the workflow, makes fashion image manipulation more accessible and reduces the barriers
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typically associated with digital fashion editing.

To facilitate the editing of fashion images with FICE, we propose an iterative GAN-inversion procedure

that utilizes several constraints when optimizing for the latent code with the desired target semantics, i.e.:

(i) a pose-preservation constraint that ensures the pose of the subject in the image is not altered during

the editing process, (ii) a composition constraint that uses a segmentation model (i.e., a body parser) to

identify regions (head and garment areas) in the input image to preserve and/or alter, and (iii) a semantic-

content constraint that enforces the semantics expressed in the provided text descriptions. We use various

differentiable deep-learning models to implement the constraints and leverage the CLIP model, a recent

state-of-the-art image–text association approach, to enforce the desired semantics. Furthermore, we propose

a latent-code regularization objective to ensure more realistic editing results. Finally, we also utilize an

image-stitching step to combine the relevant image regions from the original and edited images in the final

overall result. It is worth noting that with the proposed FICE model, we are the first to introduce an

extended GAN-inversion approach that allows for text-conditioned image editing in the fashion domain.

To demonstrate the capabilities of FICE, we perform rigorous experiments on images from the VITON

and MPV image datasets [2, 32], combined with text descriptions from the Fashion-Gen dataset [33]. We

compare FICE to several general text-conditioned GAN-based editing methods, diffusion-based techniques

as well as its closest competitor FashionGAN [20] and show that the proposed approach leads to superior

editing results for fashion images. A few of these results can be seen in Fig. 1 for three different text

descriptions. Our research leads to the following main contributions that are presented in this paper:

• We propose FICE, a model for text-conditioned fashion-image editing, which can be used with a wide

variety of textual inputs and leads to realistic and visually convincing editing results. To the best of

our knowledge, FICE is the first GAN-inversion approach presented in the literature that allows for

the incorporation of text-provided semantics when embedding an existing fashion image into the GAN

latent space.

• We introduce a novel GAN-inversion approach that incorporates constraints relevant for VTON, such

as pose-preservation and image-composition constraints, as well as a special regularization technique

that minimizes the generation of images outside the GAN-learned distribution.

• Through quantitative and qualitative evaluations, we show the benefits of the text-based editing of

fashion images and demonstrate that FICE convincingly outperforms competing, state-of-the-art, text-

based editing techniques.

2. Related Work

In this section we review relevant prior work and discuss existing research on (i) generative adversarial

networks, (ii) text-conditioned image generation and editing, (iii) GAN-inversion techniques, and (iv) the
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use of computer vision in fashion. The goal of the section is to provide the necessary background for our

work. A more comprehensive coverage of these topics can be found in some of recent surveys, e.g., [26, 34, 35].

2.1. Generative Adversarial Networks

Generative Adversarial Networks (GANs) [19] have, in recent years, become the de-facto method for un-

conditional image synthesis, leading to convincing, high-resolution image synthesis and reasonable training

times with consumer-grade hardware. DCGAN [36] introduced convolutional GANs and provided architec-

tural pointers to achieve successful GAN convergence. ProGAN [37] was the first GAN model that achieved

megapixel-sized images thanks to a progressive learning scheme. StyleGAN [38] introduced a non-linear

mapping of the latent space and an alternative generator design, inspired by the style-transfer literature.

StyleGAN2 [39] further adjusted the generator architecture to remove the frequent droplet artifacts and reg-

ularized the training with path-length regularization. StyleGAN2-ADA [40] proposed several augmentation

techniques to enable learning a high-quality GAN with limited training data. Additional details relating to

modern GAN architectures, training constraints, and loss functions can be found in a recent survey [41].

2.2. Text-Conditioned Image Generation and Editing

Text-conditioned, image-generation models are focused on generating realistic images that match the

semantics of the provided text descriptions. Conversely, corresponding editing techniques try to realistically

manipulate images in a way that preserves the image characteristics that are irrelevant to the text description.

Thus, text-conditioned image editing aims to alter only the semantic content that is expressed in the text

description, while preserving all other parts of the data.

Image Generation. The seminal work of Reed et al. [42] proposed a text-conditioned GAN model by

feeding the text information to both the generator and discriminator of the GAN design. StackGAN [43]

and StackGAN++ [44] proposed stacked generators where the resolution of the generated images increased

progressively with each generator in the stack. AttnGAN [45] proposed an attention mechanism to attend

to relevant words on which to condition the image-generation process. MirrorGAN [46] proposed a cyclic

GAN architecture that regularized the generated image by enforcing correct (re)descriptions.

While these early models discussed above already provided for competitive performance, more recent

text-conditioned generative models are several orders of magnitude larger in size and are trained on several

orders of magnitude larger datasets. DALL-E [24], for example, trained a 12-billion parameter autoregres-

sive transformer on 250 million image–text pairs, and considerably outperformed previous models in the

considered zero-shot evaluation experiments. The model was further improved in DALL-E 2 [47] through

the use of diffusion techniques. Imagen [48] proposed to increase the size of the text encoder to achieve

better results in terms of image fidelity and image–text alignment.

Image Editing. An early approach to text-conditioned image-editing methods was described by Dong

et al. in [49]. Here, the authors proposed a conditional encoder-decoder GAN model. Nam et al. [50]
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proposed so-called word-subset local discriminators that enabled fine-grained image editing. ManiGAN [51]

proposed a modified strategy for merging image and text representations while adding a detail-correction

module for enhanced image quality.

Another notable group of methods performs image editing by first converting a given image into the

latent code of some pre-trained GAN, in a process known as GAN inversion, then performing various latent-

code manipulations to achieve the desired edits. InterFaceGAN [27], for example, identified directions in

the latent space of StyleGAN2 that corresponded to specific semantic changes (given by binary attribute

labels) in the corresponding output image. Image2StyleGAN [52, 53] performed several face-image edits

using GAN inversion, and StyleCLIP [25] proposed different methods for text-guided image editing, where

the general idea is based on combining the generative capabilities of StyleGAN with the image–text matching

capabilities of the CLIP model [22]. TediGAN [54] introduced a control mechanism based on style mixing

in StyleGAN to achieve the desired semantics in face images driven by text descriptions. [28] introduced a

lightweight adapter layer and a refinement module in the StyleGAN2 latent space to achieve text-conditioned

image manipulation.

2.3. GAN Inversion

As can be seen from the literature review presented above, many of the existing editing techniques deal

with the process of GAN inversion to retrieve the image’s latent code for editing. How to conduct the GAN

inversion is a key consideration with these techniques that has an impact on the final editing capabilities.

Richardson et al. [55], for example, proposed an encoder, called pSp, to project images into the StyleGAN

latent space, and demonstrated its feasibility through several image-to-image translation tasks. E4e [29]

adjusted the pSp model so that the latent codes follow a similar distribution to the original StyleGAN latent

codes and performed image edits with several latent-code manipulation techniques. ReStyle [56] presented

an iterative procedure to obtain the latent code, while HyperStyle [57] adjusted the StyleGAN generator

weights on a per-sample basis to achieve better image reconstructions. Additional GAN-inversion methods

can be found in the recent survey [26].

Similar to the techniques discussed above, the proposed FICE model also relies on GAN inversion to

perform fashion-image editing. However, in contrast to alternative techniques, our model is geared towards

the characteristics of fashion images and exploits an iterative inversion process that explicitly considers pose

preservation and image-stitching constraints in addition to the targeted semantics to ensure both the desired

garment appearance as well as identity preservation.

2.4. Computer Vision in Fashion

A considerable cross-section of fashion-related computer-vision research focuses on VTON technology,

where, given an image of a person and some target garment, the goal is to realistically fit the garment, while

preserving the original person’s pose and appearance. Numerous studies have been conducted on various
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aspects concerning 3D human and garment modelling [9–16, 58–62], as well as the image-based fitting of

fashion items onto subjects [2–5, 63–65].

Several works introduced text modality when processing fashion images. In the field of image genera-

tion and editing, FashionGAN edited images conditioned on text inputs, segmentation masks and several

image-specific categorical attributes using encoder–decoder GANs. Fashion-Gen [33] introduced a dataset

of image–text pairs and experimented with unconditional and text-conditioned image generation. Recently,

Text2Human [21] proposed the idea of generating human images based on a description of the shape and

texture of the clothing. With this approach, the text-encoding method mapped the input text into a number

of closed sets of categories, which limits the linguistic expressiveness of the input text. Another popular

task is fashion-image editing and generation, e.g., [66, 67].

Unlike the methods presented above, FICE uses text as the only condition/input for the processing of

fashion images. Furthermore, the model is not focused on image generation, but rather on image editing,

i.e., on re-dressing people, similar to VTON methods, but using only text descriptions as the input instead of

image examples. Finally, unlike some methods, that parse the text into a closed set of categorical attributes,

FICE relies on CLIP [22], an image–text association model, trained on 400 million image–text pairs, which

allows the proposed approach to process a wider set of linguistic concepts than alternative solutions from

the literature.

3. Methodology

The main contribution of this paper is a novel text-conditioned model for fashion-image editing named

FICE (Fashion Image CLIP Editing), whose key component is a new GAN-inversion procedure that allows

for the incorporation of natural language descriptions into the editing procedure. In this section we provide

an in-depth description of the proposed model and elaborate on its characteristics.

3.1. Problem Formulation and FICE Overview

The aim of FICE is to edit the given fashion image I ∈ R3×n×n in accordance with some (appearance-

related) text description t and to synthesize a corresponding output image If ∈ R3×n×n that adheres as

closely as possible to the semantics expressed in t. Here, the synthesis process needs to meet the following

criteria: (1) the synthesized output image If should preserve the pose, identity and other appearance

characteristics of the subject in I, (2) the editing process should be local and only affect the desired fashion

items (e.g., apparel), while leaving other parts of I unchanged, (3) clothing appearances, encoded in t, need

to be realistically and seamlessly integrated into If , taking the initial pose and body shape into account,

and (4) a wide variety of textures and clothing designs need to be supported. Thus, the goal of FICE is to

implement an image-to-image mapping ψt conditioned on t, i.e.

ψt : I → If ∈ R3×n×n, (1)
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Figure 2: High-level overview of the proposed FICE editing model. The model uses a constrained

GAN-inversion procedure over the latent space of the pre-trained StyleGANv2 model G to incorporate the

semantics expressed in the provided text description into the output image Ig. Here, the optimization-

based GAN inversion is performed by enforcing: (i) the presence of semantic content (determined by the

image–text association model C, consisting of the image encoder Ci and the text encoder Ct), (ii) pose

preservation (ensured by the pose parser D), (iii) image consistency (through the segmentation model S),

and (iv) latent-code regularization. An image-stitching step is also incorporated into FICE to improve the

image’s fidelity and further enhance the model’s identity-preservation capabilities.

under the constraints discussed above. As illustrated in Fig. 2, FICE defines the mapping through a three-

stage procedure that consists of: (i) an Initialization stage, (ii) a Constrained GAN-inversion stage, and

(iii) an Image Stitching stage. A high-level summary of the three key steps is given below:

• Initialization. In the first step, the model initializes a latent code w based on the image input I using

a GAN-inversion encoder E, which serves as a first approximation of the targeted latent code. This

initial code approximates the original appearance of the input image, when interpreted through the

pre-trained GAN generator G, i.e., I ≈ G(w), as shown on the left-hand side of Fig. 2. Additionally,

a dense-pose representation and segmentation masks corresponding to different body parts are also

computed from I during this step.

• Constrained GAN Inversion. Next, the initial latent code w is further optimized using a con-

strained, optimization-based GAN-inversion technique. During each step of the optimization proce-

dure, the latent code w is fed to the generator G to synthesize an intermediate image Ig = G(w). An

optimization objective (loss) L is then defined over Ig to drive the GAN inversion that ensures: (i)

the semantics defined in t are present in Ig, (ii) the poses in I and Ig are the same, (iii) the editing

procedure appears natural, and that (iv) the optimized latent code lies in a well-defined part of the
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GAN latent space. The result of the fixed-step optimization procedure is a latent code w∗,

w∗ = argmin
w
{L(I,G(w), t)}, (2)

that corresponds to the final optimized output image I∗g = G(w∗). A number of auxiliary differentiable

models are utilized to facilitate the optimization procedure – see Step 2 in Fig. 2. Details on the models

are provided in the following sections.

• Image Stitching. In the final stage, a simple image-composition process is utilized to combine

the optimized GAN synthesized/optimized image I∗g with the original image I to ensure identity

preservation and to produce the final output image If .

3.2. FICE Structure

FICE relies on several differentiable models to infer information about the high-level characteristics of

the given input image for the constrained GAN-inversion procedure:

• Generator (G). The key component of FICE is the pre-trained GAN generator G, which is responsible

for synthesizing the fashion images based on the provided latent code w and defines the characteristics

of the generated data. To this end, we select a state-of-the-art, unconditional, image-generation

model, i.e., StyleGANv2 [39], which is capable of generating high-quality images with a resolution up

to 1024× 1024 px, and train it for the generation of fashion images.

• CLIP (C). The Contrastive Language–Image Pre-training model (or CLIP for short) [22] is a neural

network trained for pairing images and text. It consists of a separate image (Ci) and text encoder (Ct)

that produce embeddings for the pairing. The model has been trained on 400 million (image, text)

pairs and was demonstrated to have a strong zero-shot performance on various downstream tasks.

Inspired by these zero-shot capabilities, we use CLIP to provide semantic knowledge to our model and

edit the image according to the provided text description t.

• DensePose (D). A critical aspect for realistic results, when editing fashion images, is the pose

preservation. To preserve the complete body structure and pose information, we employ a sophisticated

parsing model, i.e., DensePose [68], capable of parsing individual human body parts from the given

input image. The model provides for a comprehensive and dense pose description that is utilized in

FICE to ensure that the subject’s pose in the original I and optimized images I∗g match.

• Segmentation Model (S). A segmentation model is used to identify the image regions for either

alteration or preservation. We chose DeepLabv3 [69] as our segmentation model architecture due to

its robust performance and efficient computation. Additionally, the goal of the model is to ensure

consistent image characteristics, so the final stitched image is artifact-free, photo-realistic and visually

convincing.
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• Encoder (E). The last model needed for image editing with FICE is a GAN-inversion encoder that

computes the initial latent-space embedding w from the input image I. We select the E4e (Encoder

for editing [29]) encoder for its ability to predict latent codes that adhere to the StyleGAN latent-code

distribution. This property is crucial to ensuring that the optimization procedure maintains the latent

codes within the range of the trained latent distribution, thus also preserving the integrity of the

resulting image distribution.

3.3. Constrained GAN Inversion

The main component of FICE is a novel constrained GAN-inversion technique that, given the input

image I and text description t, optimizes for the latent code w∗ that fits a number of predefined constraints –

see Eq. (2). After initializing the latent code w and computing the corresponding output image Ig = G(w),

the goal of the optimization-based inversion process is to adjust the latent code to best match the text

description while preserving various appearance characteristics of the input image. Thus, given a latent

code w and the associated image Ig = G(w), we define the several optimization objectives for FICE, which

constrain the inversion process, as detailed below.

Semantic Content. To ensure that the appearance-related semantic content, expressed in the text de-

scription t, is present in the generated image Ig, we implement a CLIP-based optimization objective/constrain,

Lclip = 1− cos(Ci(Ig), C
t(t)), (3)

where cos(·) represents the cosine similarity, and Ci and Ct represent the image and text encoder of the

CLIP model, respectively. Note that each encoder returns a L2-normalized embedding, making the angular

difference the most natural choice. The objective/constrain penalizes angular differences between the image

and text embeddings and thus promotes the presence of the semantics from t in the generated image Ig,

where Ig = G(w).

Pose Preservation. To achieve perceptually convincing editing results, it is critical to preserve the

position of all body parts from the input image in the edited output. Because our goal is a detailed and

accurate pose preservation, where individual body parts retain their size and shape, regardless of the overlaid

clothing, we utilize the powerful DensePose model D, which predicts the position and shape of individual

body parts in a clothing-agnostic manner. The pose-preservation constraint is, therefore, defined through

the following loss,

Lpose =
1

ND

ND∑
j=1

||Dj(I)−Dj(Ig)||22, (4)

where ND is the number of parsed body parts, D is the pose-parsing model and Dj(·) denotes the parsed

mask of the j-th body part. A couple of example outputs produced by the pose parser D are shown in

Fig. 3. The aim of the pose constraint is to encourage the optimization procedure to produce inverted latent

codes that correspond to images with the same pose as the original input image.
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Input Parsed by D Parsed by S

Figure 3: Sample images parsed with D and S. The DensePose model D generates a parsed body

representation consisting of 24 body parts in a clothing-agnostic manner. The segmentation model S, on

the other hand, parses the input image into three classes: head (with hair), body (with clothing) and

background.

Latent-Code Regularization. FICE operates in the extended latent vector space W+ of the pre-

trained StyleGAN generator, which is commonly used with the GAN-inversion editing techniques from the

literature [53]. The latent code w ∈ W+ consists of several latent codes, each impacting on an individual

convolutional layer in the StyleGAN generator network G. The number of individual latent codes depends

on the resolution of the generator network.

It is important to note that W+ is an artificial extension of the original latent space W. As was shown

in [52, 53], the extended latent space can be used to increase the expressiveness of the StyleGAN generator

by having independent latent codes instead of the same code for each convolutional layer, as is the case in

the original StyleGAN2. However, such an extension of the latent space does not guarantee the synthesis of

an image distribution that corresponds to the learned GAN image distribution [29].

We propose a simple regularization mechanism to mitigate the distribution discrepancy that arises from

the mismatch between the extended latent codes. This involves minimizing the distance between the coarsest

latent code to other latent codes. We chose the coarsest latent code as the target latent code, since, as it

operates on the lowest resolution, it has the most impact on the overall appearance of the image. Concretely,

given an extended latent code w = {w1, w2, ..., wNw}, where Nw denotes the number of individual codes, we

define the following loss function,

Lreg =
1

Nw − 1

Nw∑
j=2

||w1 − wj ||22. (5)

The presented loss term aims at minimizing the differences between the latent codes corresponding to

different convolutional layers in the StyleGAN model, which directly correlates with the minimization of the

image-distribution discrepancy that arises due to the mismatch between the vanilla and the extended latent
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spaces.

Image Composition. Finally, to ensure seamless image stitching, FICE uses an additional segmentation

model S that parses the following three categories from the given input image: ‘background’ (Sbg), ‘body’

(Sbody) and ‘head’ (Shead). In contrast to the pose-parsing model D, the components inferred by S contain

additional features, i.e., Sbody captures the clothing of the subject and the Shead captures the hair shape, as

shown in Fig. 3.

We define two optimization objectives based on the segmentation model S. The first (the image loss Lim)

aims to preserve the background and face regions of the image. This term is necessary because although

the face region is stitched with the synthesized image in the final step, this term helps to preserve the skin

tone of the subject and the color characteristics of the input image. The loss term is defined as,

M = 1− Sbody(I) (6)

Lim = ||M ⊙ (Ig − I)||22, (7)

where 1 ∈ Rn×n is a matrix of all ones and ⊙ denotes the Hadamard product. Furthermore, we use a second

loss term that preserves the ‘head’ region,

Lhead = ||Shead(I)− Shead(Ig)||22. (8)

This loss is used primarily to preserve the hair of the input image and to account for interactions of the

hair/head and body regions that cannot be managed solely by the image-loss term Lim defined above.

Final Optimization Objective. The final optimization objective for the constrained GAN-inversion

techniques used by FICE is defined as a weighted superposition of the individual losses, as follows,

L =λclipLclip + λposeLpose + λregLreg

+ λimLim + λheadLhead,
(9)

where λclip,λpose,λreg,λim, and λhead are balancing weights.

3.4. Image Stitching

To preserve the identity of the input person, we perform image stitching as the final step of FICE. The

final image If is obtained as,

If = Shead(I)⊙ I + (1− Shead(I))⊙ I∗g , (10)

where I∗g = G(w∗) is the image that corresponds to the optimized latent code w∗ based on Eq. (2).

4. Experimental Setup

In this section we describe the experimental setup used to demonstrate the capabilities of FICE. Specif-

ically, we discuss datasets and evaluation protocols, the baseline techniques considered as well as relevant

implementation details.
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Table 1: Overview of the fashion datasets used in the paper. Four different datasets are selected for

the experiments and used to train and test various components of FICE.

Dataset # Images Segmentations Text # Text Descriptions Aim

VITON [2] 16, 253 Coarse ✗ n/a G,E training/testing†

MPV [32] 35, 687 Coarse ✗ n/a Testing‡

DeepFashion Retrieval [70] 52, 713 Fine ✗ n/a S training

Fashion-Gen [33] 293, 018 ✗ ✓ 293, 018 Source of text descriptions

† Training and testing data are disjoint.

‡ We test FICE on qualitative experiments on MPV.

VITON MPV Fashion-Gen DeepFashion

Figure 4: Sample images from the experimental datasets. We train and test FICE with fashion

images from the VITON, Fashion-Gen and DeepFashion datasets. The MPV dataset is used exclusively for

testing.

4.1. Datasets

Here, we outline the data used for evaluation purposes. Four types of datasets are selected for the

experiments. The selected datasets, summarized in Table 1, provide image and text data for training and

testing of the main FICE components. Example images from the four datasets are presented in Fig. 4.

Image Dataset. We use the VITON dataset as our main image database. VITON is a fashion dataset

with 16, 253 frontal-view images of female models with different tops. The images are split into a training set

and a test set with 14, 221 and 2, 032 images, respectively. We use the training set to train the GAN model

(including G) and E4e encoder (E) and the disjoint test set for performance evaluations. Similar to related

studies from the literature [53, 71], we select a test set of manageable size and use the first 120 images of

the official VITON test set for the experiments. Additionally, we also use a subset of fashion images from

the MPV dataset [32] for the evaluation of FICE. Unlike VITON, MPV images exhibit larger appearance

variability with more distinct differences in terms of zoom level and view point.

Segmentation Dataset. To train the segmentation model S needed for FICE, we utilize the DeepFash-
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ion dataset [70], specifically, the In-shop Clothes Retrieval part of the dataset. We minimize the discrepancy

with the distribution of the VITON data by filtering the images to women subjects with frontal pose and

restricting the fashion categories to ‘Blouses & Shirts’ and ‘Tees & Tanks’. Furthermore, the reference

segmentation masks of different classes are merged to fit the requirements of FICE, resulting in three final

segmentation targets: Body, Face & Hair and Background. The images and segmentation masks are padded

to a square shape and then down-scaled to a resolution of 256× 256 px, as shown in Fig. 3.

Text Dataset. The last dataset used for the experiments is Fashion-Gen [33]. We use this dataset to

obtain the clothing descriptions needed for testing. Fashion-Gen consists of 293, 008 images, each paired

with a corresponding text description. We perform our experiments with image–text pairs that belong to

the ‘top’ fashion category to match the VITON dataset’s characteristics.

Test Dataset. To construct the dataset for evaluation purposes, we gather the VITON image data and

combine it with the Fashion-Gen text data. The Fashion-Gen text descriptions were created by professional

stylists and, as a result, contain many fashion-specific technical terms that are regarded as difficult for

general text–image matching models, such as CLIP, due to the shift in comparison to the distribution of

the training data. Thus, we only consider the sentences with a high match rate to the corresponding image.

Specifically, we process each image and its corresponding description to obtain a CLIP matching score, then

sort the image–text pairs by the magnitude of the match score. We keep 120 sentences with the highest

matching scores, as these are the sentences that the CLIP model ‘understands’ the best. During testing

we combine each test image with every text example to construct all possible image–text combinations,

resulting in a total of 120 · 120 = 14, 400 test combinations.

4.2. FICE Implementation Details

Here, we outline the specifics of the FICE implementation. The generator G of FICE is based on

StyleGAN2 [39] and was trained on the training split of the VITON dataset. Prior to training, the images

from the dataset were first cropped to 192 × 192 px by removing the bottom part of the image and then

re-sized to 256 × 256 px using bilinear interpolation. The training was performed for a total of 450, 000

iterations, achieving a final Fréchet Inception Distance (FID) of 3.83.

For the pose-parsing we utilized the DensePose model [68] D with a ResNet50 backbone and the Panoptic

FPN head [72]. We used the pre-trained model from the Detectron2 repository2. The selected model

is capable of parsing 24 individual body parts (e.g., upper-left arm). For our implementation, we only

considered body parts that are suitable (or applicable) for the VITON dataset, i.e., the upper-body indices.

The segmentation model S was trained on the DeepFashion dataset [70]. We used cross-entropy as

the learning objective and weighted the predictions according to the class imbalance of the training split

2Available from: https://github.com/facebookresearch/detectron2
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of the dataset. The learning procedure was performed for 19 epochs (until convergence) using the Adam

optimizer [73] due to its competitive performance [74, 75] with a fixed learning rate of η = 10−4.

The GAN inversion E4e [29] encoder E was trained on the VITON training dataset, using G as the target

GAN model to invert. Finally, the CLIP RN50x4 network architecture was chosen as the image encoder for

the CLIP model. For the optimization-based GAN-inversion procedure in Eq. (2), balancing weights were

chosen based on preliminary experiments and a visual inspection of the results on the training data, so that

λclip = 1, λim = 30, λpose = 10, λhead = 1, λreg = 1. The number of GAN-inversion optimization iterations

was fixed and set to 500 for all the experiments. We used the Adam optimization algorithm with a learning

rate of η = 5 · 10−2 when optimizing the latent code to compute w∗.

4.3. Baseline Models

We use multiple baseline methods to compare against FICE. In this section we provide a brief outline of

the selected methods to make the paper self-contained.

4.3.1. FashionGAN [20]

The closest competitor to FICE is FashionGAN [20]. FashionGAN involves a two-step generation

phase. The first stage defines a plausible segmentation map corresponding to the input subject. The second

stage takes the generated segmentation map, text, and categorical attributes to generate the edited image.

It is worth noting that this method uses additional categorical data besides the raw text, such as the skin’s

mean RGB value and sleeve information, to perform the editing. We removed this conditioning to perform

a direct comparison. The text encoder used in FashionGAN is not directly suitable for wide-vocabulary

text due to its reliance on a predetermined word-level tokenization vocabulary that was constructed from a

relatively small text dataset. Thus, we trained the method using the CLIP text encoder to allow for a fair

comparison. The final step of the method involves image blending, similar to FICE.

4.3.2. Prompt to Prompt [76]

Prompt to Prompt (P2P) is an editing technique for diffusion generative models. It requires a default

text prompt as well as a target text prompt. P2P works by modifying the textual prompts from default

to target prompt while preserving the attention maps generated by the default prompt. These attention

maps strongly influence the generated image’s spatial layout, ensuring greater consistency during the editing

process.

The editing process relies on a guidance scale hyperparameter during classifier-free guidance to control

the semantic impact of the edit [76]. Higher guidance scales produce outputs strongly aligned with the target

prompt, but this can introduce artifacts within the generated image. In our implementation, a guidance

scale of 4.0 was used, and attention maps were preserved across all the steps for image generation. Processing

real images is achieved through an inverse de-noising process before the P2P editing process.
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Experiments indicated that this method is very sensitive to the specific wording of the target text prompt.

Throughout the initial testing on the VITON image dataset, the following prompt proved most effective: “A

photo of a woman wearing {t}, full body, high-quality.”, where t denotes the target text fashion description.

An empty prompt is used as the neutral prompt. We utilize Stable Diffusion [77], a powerful open-source,

text-to-image diffusion model for the image generation. Note the substantial training-data difference: our

GAN is trained on 14,221 images compared to Stable Diffusion’s dataset of 5 billion images.

4.3.3. GAN-inversion-based methods

Next, we implement several GAN-inversion based methods. Specifically, we use various methods to obtain

the latent code of the image, and then process the latent code using the global StyleCLIP method [25], which

modifies the latent code to enforce the desired semantics.

GAN inversion. Given our trained GAN model, we train several GAN-inversion encoder models to

use as baselines in the experiments presented in the next section. Details about the considered encoding

techniques are given below:

• pSp [55]. The pSp model was proposed for the tasks of conditional image synthesis, face frontalization,

inpainting, and super-resolution, and due to this a broad application range was also selected for our

experiments. The architecture of pSp is based on a ResNet-style feature pyramid [78] and multiple

encoder networks. The encoders predict a particular StyleGAN latent code from each convolutional

layer of the feature pyramid and, in this way, embed images into the StyleGAN latent space.

• E4e [29]. E4e follows the architecture of the pSp model, but uses a distinct training process to ensure

that the predicted, extended latent code approximates the code defined in the original StyleGAN latent

space. This allows the model to perform more convincing image manipulations when using techniques

that try to alter the given latent code to achieve semantically meaningful edits.

• ReStyle [56]. While pSp and E4e embed images in the latent space in a single, forward pass, ReStyle

uses an iterative procedure that gradually improves the embedding so it corresponds better to the

given input image. We consider two ReStyle versions for the experiments, one with the pSp and one

with the E4e encoder.

• HyperStyle [57]. In contrast to the inversion methods above, HyperStyle predicts the latent code of

an input image, while also modifying the weights of the StyleGAN generator on a per-sample basis.

The model first predicts an approximate latent code using the vanilla StyleGAN generator. This initial

prediction, along with the original image, then serve as an input to a hyper-network that predicts the

offsets for the StyleGAN weights. The weights are finally modulated with the offsets and the resulting

StyleGAN is used to synthesize the final image.
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StyleCLIP for Editing. To provide editing capabilities for the GAN-inversion techniques, we use

StyleCLIP’s global editing method, which displaces the latent code of the given input image along a certain

editing direction in accordance with the semantics encoded in some text description. StyleCLIP relies on

two hyperparameters (α, β), where α defines the magnitude of the displacement in the latent space and β

represents a threshold that controls the entanglement of the edited attributes. The choice of α determines

the strength of the semantic content from the text present in the edited image. However, large values of α

are known to degrade the image quality and alter both the pose and identity of the input subject. These

adverse effects can be reduced by using a disentanglement mechanism with a certain value of β. However,

large values of β reduce the presence of the desired semantic presence. A suitable trade-off is therefore

required. We consider this trade-off in our comparative assessment and perform StyleCLIP experiments

with several different combinations of (α, β) values. Specifically, we use α values of {3.0, 4.0, 5.0, 7.5, 10.0}

and β values of {0.00, 0.025, 0.050, 0.075, 0.100, 0.125}, which represent a reasonable cross-section of values

for the evaluation.

4.4. Evaluation Metrics

To evaluate FICE against comparative methods, we define four distinct criteria that address different

aspects of the editing process, i.e.:

• Semantic Relevance. The synthesized images should contain semantics that are relevant with

respect to the input text t. We evaluate this aspect in the experiments with the CLIP model, defining

a CLIP-similarity score between a given image I and the target text t as,

S(I, t) = cos(Ci(I), Ct(t)), (11)

where Ci and Ct are again the CLIP image and text encoders, respectively.

• Pose Preservation. The edited image should preserve the pose of the input person. We evaluate

the pose-preservation capabilities using Intersection over Union (IoU), a commonly used metric in the

field of semantic segmentation [79–81]. We utilize DensePose for pose prediction because the model is

insensitive with respect to overlaid clothing and compute an IoU score between the pose predictions

from the input and edited images.

• Identity Similarity. The editing model should preserve the identity and facial appearance of the

input image. We therefore use the RetinaFace model [82] to detect the face region, and then process

it with ArcFace [83], a face-recognition model, to extract a face-embedding vector. To quantify the

similarity between the input and edited image in terms of identity, we compute the cosine similarity

between the corresponding face-embedding vectors.
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• Image Fidelity. The editing methods should synthesize high-fidelity images that are comparable to

the inputs. To measure the quality of the generated images, we use the Fréchet Inception Distance

(FID) [84]. The metric is based on the difference between the statistics of image embeddings as

extracted by the InceptionV3 neural network [85] and has been used as one of the main metrics to

evaluate the image quality of different image-synthesis models [37–40].

5. Results and Discussion

In this section we report the results that: (i) demonstrate the capabilities of FICE for fashion-image edit-

ing through several qualitative examples, (ii) compare the proposed model to several competing techniques,

(iii) highlight the importance of various components through rigorous ablation studies, (iv) investigate the

sensitivity of FICE to text rephrasing, (v) analyze the generalization capabilities of FICE, and (vi) explore

the model’s limitations. Some additional results are also available in the Supplementary Material.

5.1. Qualitative Results

FICE Evaluation. We first evaluate the editing capabilities of FICE in Fig. 5 over a number of test

images with different pose characteristics and initial clothing styles (e.g., long and short sleeves, different

material, designs, etc.) and different text descriptions. We observe that FICE is able to: (i) synthesize

complex clothing styles (see, for example, the camouflage pattern in the second column), (ii) convincingly

incorporate the semantics expressed in the text descriptions into the edited images, (iii) preserve the pose

and identity of the subjects, (iv) add or remove sleeves from the initial clothing (and hallucinate initially

obscured objects, e.g., arms), and (v) ensure a seamless fit with realistic clothing characteristics (e.g., with

creases) without explicit 3D modelling. The presented examples highlight the impressive editing capabilities

of FICE and illustrate the flexibility of text-based editing.

Comparative Evaluation. Next, we compare FICE to the competing models introduced in the previous

section. For the evaluation, we consider two distinct cases:

• Same image–different text (SI-DT). In this configuration we test all the models on the same input image

and pair it with different target text descriptions to demonstrate how the models handle different types

of semantics.

• Same text–different image (ST-DI). Here, we use different input images and pair them with the same

target text description to explore the consistency of the edits made by the models with diverse inputs.

From the results in Fig. 6 (SI-DT) and Fig. 7 (ST-DI), we see that both FashionGAN and FICE preserve

the subject identity very well. This is due to the final stitching operation, which is only possible due

to the pose-preservation techniques of both FICE and FashionGAN. However, we also observe that the

FashionGAN-generated results are much less convincing than the remaining methods, often generating
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“Sleeveless

hand-

embroidered

sequin camisole

featuring a camo

pattern

throughout in

tones of green,

brown, and

black”

“Long-sleeve silk

crepe de chine

shirt featuring

graphic pattern

printed in tones

of blue”

“Short-sleeve

fine mercerized

cotton piqué

polo in navy”

“Short-sleeve

ruffled cotton

poplin and

jersey blouse in

pink”

“Short-sleeve

cotton jersey

t-shirt featuring

floral pattern in

tones of army

green and

off-white.”

“Short-sleeve

cotton piqué

polo in soft

black”

Figure 5: Example results generated by FICE for various text descriptions. As can be seen, FICE

is capable of synthesizing complex fashion styles (e.g., see the camouflage pattern in the second column),

while preserving the pose and identity of the subjects as well as other image characteristics. Note the realism

and seamless integration of different clothing items (in various designs, materials and shapes) without any

3D modelling. Best viewed electronically and zoomed-in.

fashion garments with visual artifacts. In contrast, FICE manages to generate results where the fashion

garment is convincing and photo-realistic.

The analysis of the P2P results reveals that while the generated images semantically align with the target

prompt, they exhibit poor correspondence to the input images, indicating significant entanglement issues.

Specifically, significant pose and identity changes occur, with some results also changing the background (2.

row of Fig. 7, zooming in/out (1. row of Fig. 7), and even lacking the upper body entirely (2. row of Fig. 6).
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silver-tone.”

Text

description
Input

FashionGAN

[20]
P2P [76] pSp [55] E4e [29]

ReStyle-pSp

[56]

ReStyle-E4e

[56]

HyperStyle

[57]

FICE

(Ours)

Figure 6: Example results with the Same image–different text (SI-DT) configuration. While

most techniques are able to incorporate the desired semantics, FICE leads to the most realistic results and

most convincingly preserves the identity.

The compared GAN-inversion models (pSp, E4e, ReStyle-pSp, ReStyle-E4e, and HyperStyle) and P2P

do not preserve identity nearly as well as FICE and FashionGAN. The reason for that is twofold. First,

when an image is embedded in the latent space, there is some loss of identity information due to imperfect

reconstruction through the generative model. The second reason lies in the entanglement of the latent-code

space that causes several undesired changes to the edited image. StyleCLIP, which is used with GAN-

inversion models, integrates a disentanglement mechanism; however, a shift of the latent code still partially

affects the person’s identity. FICE, on the other hand, preserves the identity due to the image-stitching

formulation of the model. Moreover, we observe that the editing results of the competing models exhibit

certain entanglement issues, as can be seen in the third row of Fig. 6, where a change to red clothes also

adds red lipstick. Finally, FICE performs better when editing certain clothing styles such as ‘polo shirt’ as

seen in a more convincing collar in the first and third rows of Fig. 6. While the semantics from the target

text can be seen in most edited images, the results for the proposed model are visually the most convincing.

When looking at Fig. 7, we see that the compared GAN-inversion methods often have problems with

exact positioning of the person in the edited image. The person is often shifted with respect to the original

image, as best seen in the result of the E4e model in Fig. 7. Such pose shifts make it impossible to integrate

image-stitching techniques into the competing models. The main reason for the observed behavior can be
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FashionGAN

[20]
P2P [76] pSp [55] E4e [29]

ReStyle-pSp

[56]

ReStyle-E4e

[56]

HyperStyle

[57]

FICE

(Ours)

Figure 7: Visual examples generated with the Same text–different image (ST-DI) experimental

configuration. All models were tested with the same target description “Sleeveless rib knit wool bodysuit

in black”. Note how all models are able to infuse the targeted semantics, but except for FICE, often also

produce pose/position changes as well as visual artifacts.

attributed to the use of perceptual losses when training the encoder models. The perceptual losses generally

increase the image fidelity at the expense of a precise object localization. While such a trade-off is reasonable

for other image-processing tasks, it is not optimal for the task of VTON, where the pose and position of

the input person should be preserved exactly. FICE integrates a pose-preserving loss term with a pixel-level

loss term to avoid such positioning problems. We note that all the tested models generate consistent edits

in terms of the desired semantics, but except for FICE, also often introduce considerable visual artifacts.

5.2. Quantitative Results

In this section, we perform a quantitative evaluation, comparing FICE to the competing methods. The

evaluation metrics were computed using the test set, consisting of every pair of 120 VITON images and

120 Fashion-Gen text descriptions, resulting in a total of 14, 400 image–text pairs. When calculating the

final scores for performance reporting, the scores for images and text descriptions are averaged for the

semantic relevance score, IoU, and identity-similarity metrics. The FID score is averaged only over the text

descriptions, since the metric is already calculated over a set of images.

In general, all the GAN-inversion compared methods exhibit some trade-off, where a higher semantic rel-
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Figure 8: Fine-grained comparison across multiple hyperparameter values. For the

StyleCLIP-based models, we consider the β value of the best-performing (α, β) combination and α ∈

{3.0, 4.0, 5.0, 7.5, 10.0}. Increasing α generally increases the semantic-relevance score, but above a certain

point degrades the results.

evance of the image is associated with worse performance for all the other performance indicators considered.

Therefore, we decide to evaluate the results for the competing methods for several sets of hyperparameter

values. We directly compare FICE with the competitors for the hyperparameters values (α, β), where the

maximum semantic score was obtained to ensure a reasonable and fair evaluation.

Table 2 presents the average experimental results. FICE outperforms the competing methods across

all the evaluated metrics. The image-stitching technique contributes to FICE’s superior identity similarity

compared to other GAN-inversion models. FashionGAN, which also employs image stitching, achieves a

high identity similarity, but falls slightly short of the FICE. This is likely due to FashionGAN’s tendency

to generate image artifacts within the face bounding box, degrading the identity-similarity scores. FICE

achieves the highest identity similarities, with only minor artifacts of the image stitching preventing it from

achieving a perfect score of 1.

The results of the outlined experiments are shown in Table 2 as average, overall results. As can be

seen, FICE outperforms the competing methods in terms of all the evaluated metrics. The image-stitching

technique helps FICE achieve a superior result in terms of identity preservation when compared to other

GAN-inversion models. FashionGAN, which uses an identical image-stitching technique, also achieves a

high identity similarity, but one that is slightly worse than FICE. We attribute this to a higher likelihood of

FashionGAN generating image artifacts within the face bounding box, which degrade the identity similarity

scores. FICE achieves the highest identity similarities, with only the minor artifacts of the image stitching

preventing it from achieving a perfect score of 1.

FICE also excels in pose preservation, achieving higher IoU scores than the competing methods. The
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Table 2: Quantitative comparison. FICE is compared to several competing techniques and across

four different performance indicators. The arrows denote whether higher or lower scores imply better

performance.

Model Semantics (↑) Identity sim. (↑) IoU (↑) FID (↓)

FashionGAN [20] 0.345 0.816 0.930 149.42

P2P [76] 0.414 0.281 0.754 105.82

pSp [55] 0.377 0.390 0.922 67.74

e4e [29] 0.402 0.298 0.834 86.74

ReStyle-pSp [56] 0.403 0.337 0.907 75.01

ReStyle-e4e [56] 0.391 0.327 0.835 91.92

HyperStyle [57] 0.399 0.368 0.849 84.70

FICE (Ours) 0.446 0.926 0.949 60.96

competing GAN-inversion methods and P2P tend to alter the subject’s pose as they do not have an explicit

subject-pose-conditioning mechanism. FashionGAN achieves the next-best pose-preservation score. Its

worse performance can be attributed to the fact that, only the second step in the generation process is

conditioned on the subject-segmentation map, while the final pose is not explicitly enforced in the training

procedure. Conversely, FICE enforces pose consistency in every iteration of the GAN-inversion process.

Finally, FICE also achieves the best FID scores (lower is better), pointing to the highest visual quality

among all the evaluated models. FashionGAN, on the other hand, has degraded FID results, again likely

due to the presence of image artefacts in the generated images. P2P achieves fairly weak FID results, which

can be attributed to the discrepancy between the test-set image distribution and the generated one due to

the P2P’s entanglement issues.

In Fig. 8 we show the results for several α values, where the β value is fixed to the value from the best

(α, β) combination. Increasing the α value leads to a higher CLIP score (higher semantic relevance), but

only up to a certain point, after which the results become worse. All the other metrics worsen when the α

value is increased.

5.3. Ablation Study

In order to facilitate understanding of the importance of individual FICE components, we perform an

ablation study of the impact of: (i) the latent-space choice made, (ii) the initialization scheme used, and

(iii) the contribution of different loss terms. The motivation for the ablation is to further justify the design

choices made with the proposed editing approach.
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Figure 9: Visual ablation study results – latent space. Examples of FICE–edited images when the

latent space is restricted to w ∈ W. The target description is set to “Structured knit bandeau top in yellow

and off-white stripes”. Due to lower expressiveness of the vanilla StyleGAN latent space W, the generated

results exhibit limited pose preservation and semantic correctness.

Table 3: Ablation study w.r.t. latent spaces. We analyze the choice of the latent space (vanilla W and

extended W+) as well as the procedure for initializing the latent code w.

Latent-space variant Semantics (↑) Id. sim. (↑) IoU (↑) FID (↓)

w̄,W 0.422 0.923 0.914 72.11

w̄,W+ 0.443 0.918 0.919 77.13

Ê(I),W 0.378 0.911 0.886 63.16

E(I),W+ (FICE) 0.446 0.926 0.949 60.96

Latent Space and Initialization. To demonstrate the importance of the latent-space choice made for

FICE as well as the importance of the initialization procedure, we consider the vanilla W and the extended

W+ latent-code spaces, and initializations with either the latent-code mean w ← w̄ or the GAN-inversion

encoder predicted latent code w ← E(I). Because the utilized GAN-inversion E encoder (E4e) is based on

the extended W+ space, we train a separate E4e encoder (denoted as Ê) for the vanilla latent-code space

W using the proposed method from the E4e repository3.

From the results in Table 3, we see that the vanilla latent space W has limited expressive power, which

adversely affects the semantic-relevance scores. The extended latent space W+ contributes towards higher

semantic scores, but requires a careful initialization scheme. The trivial mean-initialization scheme leads

to a degradation in image fidelity, whereas a GAN-inversion based initialization leads to fidelity gains. We

3Available at https://github.com/omertov/encoder4editing
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Table 4: Ablation study results w.r.t. loss terms. We analyze the impact of individual FICE opti-

mization objectives across four performance measures.

Objective Semantics (↑) Id. sim. (↑) IoU (↑) FID (↓)

Semantic term (Lclip) 0.453 0.819 0.781 82.52

+ composition (Lim/head) 0.466 0.924 0.888 68.94

+ latent reg. (Lreg) 0.450 0.924 0.884 64.14

+ pose pres. (Lpose)
† 0.446 0.926 0.949 60.96

† Complete FICE

show visual examples that illustrate the impact of the latent-space choice in Fig. 9. Note how due to the

limited expressiveness of the W space (compared to W+) the editing procedure is not able to infuse proper

semantics into the images shown in the middle column.

Impact of Loss Terms. Next, we evaluate the contribution of the individual loss terms from Eq. (9) on

the generated results. Specifically, we ablate three distinct terms by setting the corresponding loss weights to

0: (i) the pose-preservation term (λpose = 0), (ii) the image-composition term (λim = 0 and λhead = 0), and

(iii) the latent-code regularization term (λreg = 0). We keep the semantic-related CLIP term, as text-based

editing is not possible without it.

The results of loss-related ablations are shown quantitatively in Table 4 and qualitatively in Fig. 10. We

observe that the image-composition term improves all the metrics by ensuring that composition does not

cause unnatural visual artifacts. Interestingly, the absence of the composition term strongly degrades the

identity-similarity score, even though the face is preserved by the image-stitching step. Regularization of

the latent code slightly degrades the semantic-relevance score, but contributes to image fidelity. Finally, the

pose-preservation term also slightly lowers the semantic-relevance score, but contributes to the IoU index

and further improves the FID score.

Sensitivity of Balancing Weights. Here, we inspect the sensitivity of FICE with respect to the values

of the balancing weights. We modify the image-composition loss term Lim by adjusting its corresponding

balancing weight λim. The default FICE balancing weight is λim = 30, and we perform experiments by

changing its value to {1, 15, 45, 60}. The results are shown in Figure 11. We observe that the results are

robust to large deviations of this weighting term, but low values tend to fail in preserving the skin tone,

while high values might cause the model to focus less on the correct semantic content.

5.4. Sensitivity to Textual Rephrasing

In the next series of experiments, we explore FICE’s sensitivity to rephrasing of the input prompts.

We conduct an experiment by using all 120 textual descriptions in the testing dataset, rephrasing each
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Input Semantic term
+

Composition

+

Regularization
+ Pose (FICE)

Figure 10: Visual ablation study results – loss terms. An optimization objective that relies exclusively

on the semantic term (2nd column) produces unsatisfactory image-composition results. Adding the image-

composition term (3rd column) ensures pleasing image-stitching results, but the output image still often

contains visual artifacts. The addition of the latent-code regularization term (3rd column) helps mitigate

these artifacts. Finally, the pose-preservation accurate ensures more realistic and true results compared to

the input.

description into a new one. For this purpose, we resort to the GPT4 large language model [86] with the

following prompt: ”Rephrase the following fashion-related sentence while preserving the original meaning:

#text”, where #text is the textual description that originates from the initial dataset. We collect the

returned sentences and process them with FICE on the testing-image dataset. Example results are shown

in Fig. 12. We observe that the edited images exhibit slightly different garment colors and clothing styles.

However, the overall changes are minute and semantically correct and do not introduce any variations in

pose or facial appearance.

5.5. Generalization Analysis With Other Data

In this section, we examine how FICE generalizes across different types of data and datasets.

Image Data. We explore the generalization capabilities of FICE by investigating text-conditioned image

editing on the MPV image dataset [32], which was not used at any point of the training procedure. We

process the images with the same pre-processing operations as used for the VITON dataset, first cropping

the bottom part of the image to 192 × 192 px, then resizing the cropped image to 256 × 256 px. For the

experiments, we again create various image–text combinations, where the text descriptions stem from the
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Sleeveless woven silk top

in metallic silver-tone.

Sleeveless woven cotton

blouse in white featuring

ruffled trim and raw

edges throughout.

Short sleeve cotton and

cashmere-blend jersey

t-shirt in navy.

Input text Input image λim = 1 λim = 15 λim = 30 λim = 45 λim = 60

Figure 11: Visual ablation study results – balancing weights. The results obtained when varying the

image-composition loss term weight λim are fairly robust. However, some undesired deviations can occur.

When the image-composition weight is low, the optimization focuses less on the original skin tone and it

might not be well preserved, as seen in the results for λim = 1 in the first and second rows. On the other

hand, if the weight is too high, it might overpower the other loss terms, such as the semantic content term,

which can cause the model to not generate all the target semantics. An example can be seen for the higher

values of λim in the last row, where the depicted subject wears longer sleeves even though the target text

specifies short sleeves. Note that λim = 30 corresponds to the default FICE settings.

Fashion-Gen dataset. Qualitative example results are shown in Fig. 13. Note how FICE is again able to

convincingly infuse the semantics from the text descriptions into the MPV images, while preserving the pose

and identity of the subjects in the input images.

Text Data. Here, we explore the FICE generalization capabilities with respect to the textual inputs.

Our aim is to synthesize novel textual descriptions with the least amount of dataset-specific bias. We collect

new text descriptions using the GPT4 large language model [86]. The input prompt was specified to match

the fashion categories present in our testing-image dataset (VITON). The GPT4 input prompt was set

to ”Generate random textual descriptions, that would describe a top or a blouse, while focusing on visual

aspects.”. Example results of this experiment are shown in Fig. 14. We observe that FICE is robust with

respect to a wide range of input textual descriptions, generating convincing image edits across a wide range

of fashion concepts.

5.6. Limitations

While the proposed FICE model achieves high-quality, competitive image-editing results, it still has

certain limitations. Specifically, the model inherits the constraints of CLIP on the length of the text
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Short-sleeve

semi-sheer silk

shirt in white.

Short-sleeved,

semi-sheer white

shirt made of silk.

Short-sleeve

sculptural

garment-pleated

t-shirt in black.

Black t-shirt with

short sleeves,

featuring sculptural

garment pleating.

Figure 12: FICE Sensitivity to Textual Rephrasing. Rephrasing the input prompts can lead to different

image-editing results. The edited images can have a different colour of the fashion garment or a slightly

different clothing style. However, overall, the changes are slight, semantically correct, and do not induce

any variations in pose or facial appearance.

description, which is limited to 76 tokens, as extracted by the byte-pair encoding technique [87]. FICE

is also a slower method than the encoder-based methods, requirinig approximately 40 seconds for image

edits, compared to less than a second for GAN-inversion-based methods and approximately 10 seconds for

the P2P model. Finally, FICE sometimes struggles with accurate depictions of sleeve length (see 3rd row

of Fig. 5), text prompts containing detailed descriptions of objects/logos, and the occasional unconvincing

synthesis of a subject’s hands. Failure cases due to complex text prompts and unconvincing synthesized

hands are exemplified in Fig. 15. We speculate that a higher-capacity generative model would contribute a

great deal to improvements in the FICE results.

6. Conclusion

In this paper we presented FICE, a novel model for realistic text-conditioned fashion-image editing. The

core of the approach is based on a novel, extended GAN-inversion procedure guided by CLIP semantic

knowledge as well as pose, regularization, and composition constraints. We showed through rigorous exper-
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Short-sleeve

chambray

shirt-dress in blue.

Short-sleeve jersey

t-shirt in burgundy.

Short-sleeve cotton

jersey t-shirt in

dahlia pink.

Short-sleeve cotton

piqué polo in grey.

Long sleeve silk

crepe de chine shirt

in sprint green.

Figure 13: Example results generated by FICE for various text descriptions for the MPV

dataset. We again observe that the results preserve the pose and identity of the subjects, as well as other

image characteristics, such as scene illumination.

iments that FICE not only convincingly edits fashion images, but it also enhances the realism and fidelity

of the synthesized fashion images.

One key insight from our research is the effectiveness of integrating text-based input with GANs for

fashion-image editing. Unlike traditional methods that rely on direct image manipulation, using descriptive

text allows for a more intuitive and flexible editing process. Our findings also underscore the importance

of maintaining the pose and identity of the subjects in fashion images. This is achieved through pose- and

image-composition-preserving constraints that help ensure that the inherent characteristics of the original

images are retained and achieve a more convincing result than the compared methods. The main novelty

introduced in this work, i.e., the extended GAN-inversion approach, has implications for other areas and

generative tasks that require the embedding of existing images into the latent space, while also considering

additional sources of information during the process.

We plan to further extend the procedure to additional sources of information (e.g., reference pose key-
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With its swirling marbled

design in shades of purple

and blue, this top mimics

the appearance of a

tranquil ocean.

Sporting jagged,

lightning-like patterns in

shades of blue and silver,

this top gives off an

electric vibe.

This cropped tee sports a

tie-dye pattern in fiery

shades of red and orange,

evoking the look of a

blazing sunset.

This wrap blouse is made

from a silky fabric with a

leopard print, giving it a

luxuriously wild look.

This blouse catches the

eye with its intricate

paisley pattern in shades

of teal and gold, elegantly

juxtaposed against a soft

cream background.

This peasant blouse

showcases a subdued color

palette of earth tones,

enhanced by intricate

embroidery around the

neckline.

Figure 14: Example results generated by FICE for GPT4-generated textual descriptions. FICE

is capable of synthesizing convincing image edits from a wide range of input textual descriptions.

points, additional visual prompts, clothing-texture information, etc.) that will allow us to alter additional

characteristics of the input images, look into mechanisms for speeding up the iterative inversion process and

explore possibilities to edit other clothing items beyond tops, such as lower garments or shoes.
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“Skull graphic at

front in black.”

“Multi-colour

lightning bolt print

at front.”

“Saints Pauls

cathedral landmark

graphic printed in

black and grey at

front.”

Complex text prompts Hand synthesis

Figure 15: Illustration of FICE limitations. Left: when presented with text descriptions involving

objects and specific logos to be shown on the garment, the model is only capable of generating approximate

results. In the presented examples, the model fails to produce a convincing skull graphic (first row), a

lightning bolt (middle row), or a cathedral (last row). Right: Our model sometimes fails to generate

convincing hands of the subjects.
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