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Abstract

In the main part of the paper we reported several results to highlight the capabilities of FICE. In this

Supplementary material we present additional details and experiments to further explore the characteristics

of FICE, including: (i) details of the hyperparameter settings for the competing techniques (pSp, E4e,

ReStyle, and HyperStyle) used in the main part of the paper, (ii) analysis of CLIP performance in the

fashion domain, iii) designing a stochastic FICE, (iv) investigations into alternative latent-code initialization

schemes (with style mixing), (iv) additional results on the MPV image dataset, (v) details of the results

by individual metrics, (vi) execution time analysis, (vii) provide implementation details, and (viii) describe

the implications to other related scientific fields..

1. Hyperparameter Settings

In the main part of the paper we considered several baseline GAN-inversion techniques combined with

StyleCLIP to compare with FICE. These included pSp [1], E4e [2], ReStyle [3] with the pSp and E4e

backbones, and HyperStyle [4]. The optimal hyperparameter (α, β) settings that were used with these

methods are listed in Table 1 for completeness.

2. Analyzing CLIP Image–Text Understanding in the Fashion Domain

In this section we explore the CLIP capabilities in understanding fashion data. To this end, we take

several input text sentences from the main manuscript and search for the nearest images in LAION [5], a

large, publicly available, image–text paired dataset of 400 million samples with pre-computed CLIP image
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Table 1: Best-performing hyperparameter settings. The best setting for each model was determined

based on the semantic-relevance score.

Model Magnitude (α) Disentanglement (β)

pSp [1] 4.0 0.50

e4e [2] 4.0 0.025

ReStyle-pSp [3] 7.5 0.025

ReStyle-e4e [3] 7.5 0.050

HyperStyle [4] 5.0 0.050

embeddings. The closest image matches for a given input text and the angular similarity scores are shown

in Fig. 1. We observe that CLIP already incorporates a good understanding of fashion data, providing

convincing matches to the text prompts.

Next, we aim to gain a deeper understanding of the CLIP similarity scores. It is important to note that

the CLIP training scheme was designed to maximize the positive pair cosine similarity in comparison to

negative pairs, using cross-entropy loss. This implies that the raw values are used for ranking in comparison

to other pairs rather than providing straightforward information about the pair similarity. We can compare

example similarity scores in Fig. 1 to the average CLIP similarities, obtained by FICE and the compared

methods. The best image matches tend to have a similarity score between 0.37 and 0.40. This similarity

range closely follows the average scores of the compared methods. Meanwhile, FICE achieves a similarity

score of 0.446, demonstrating its ability to generate images with high semantic relevance to the text prompt.

3. Stochastic Image Editing

The proposed FICE approach to fashion-image editing, as presented in the main manuscript, is a deter-

ministic algorithm. That is, for a given input image and text, the edited image is always the same. This

approach offers certain benefits: (i) the model behaves consistently, (ii) it is easier to evaluate and compare

with its competitors, and (iii) the results are simpler to reproduce. However, a single textual description

can correspond to an infinite number of plausible visual representations. Incorporating stochastic elements

can allow the algorithm to explore a more diverse solution space, enhancing the naturalness of the generated

images.

In order to produce stochastic results, we follow the StyleGAN2 [6] projection protocol, which involves

adding noise to the latent code during the GAN-inversion process. We apply the following mapping before

the latent code is evaluated by the auxiliary models:

w ← w +N (0, 0.05σwt
2), (1)
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Text:

“Long-sleeve

cotton sateen

shirt in white.”

Text:

“Short-sleeve

cotton piqué polo

in soft black.”

CLIP similarity 0.382 0.377 0.377 CLIP similarity 0.389 0.385 0.378

Text:

“Short-sleeve

cotton jersey

t-shirt featuring

floral pattern in

tones of army

green and

off-white.”

Text: “Skull

graphic at front

in black.”

CLIP similarity 0.386 0.382 0.380 CLIP similarity 0.396 0.394 0.391

Text:

“Multi-colour

lightning bolt

print at front.”

Text: “Saint

Paul’s cathedral

landmark

graphic printed

in black and

grey on front.”

CLIP similarity 0.403 0.383 0.381 CLIP similarity 0.409 0.396 0.394

Figure 1: LAION images with the highest CLIP similarity given the text prompt. The figure

shows the three LAION images with the highest CLIP similarity score given the input text prompt. The

values below denote the similarity score for each text–image pair.

where σw is the standard deviation of the latent codes and t goes from one to zero during the first 375

iteration steps of the GAN-inversion procedure. Example results produced with the stochastic extension are

shown in Fig. 2. We observe that this extension allows us to reliably generate multiple possible results for a

single image–text pair. The generated image edits are plausible given the input text description, while most

of the changes stem from slight color changes as well as details in the clothing style.

4. Exploring Style Mixing for Code Initialization

As demonstrated in the experiments in the main part of the paper, FICE generates competitive, high-

quality editing results when compared to state-of-the-art models from the literature. Nevertheless, we

observe that in certain cases, the results generated by FICE are impacted by the characteristics of the input

image. When the targeted semantics from the provided text description differ from the semantics already

present in the input image (i.e., changing a plain white shirt to a dark-coloured shirt), FICE can sometimes

produce unsatisfactory results. In this subsection, therefore, we explore alternative ways of latent-code
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Sleeveless panelled rib

knit cotton and silk-blend

tank top in lime green.

Short-sleeve knit wool and

silk-blend t-shirt in grey.

Short-sleeve semi-sheer

silk t-shirt in black.

Input text Input image Image edits using the stochastic FICE variant

Figure 2: Stochastic FICE. By introducing stochastic mechanism in FICE, our method is capable of

generating diverse image edits per single image–text pair.

initialization to mitigate this issue and synthesize images with better target semantics.

We note again that FICE operates in the extended latent vector space W+ of the pre-trained StyleGAN

generator. The complete latent code w ∈ W+ of a given input image I, therefore, consists of several

individual latent codes, each impacting an individual convolutional layer in the StyleGAN generator network

G. To better understand the semantics, encoded in different subsets of the overall latent code, we conduct

style-mixing experiments in this section. Style mixing refers to injecting a latent-code subset into another

latent code. Similarly, as in [7], we do so for coarse, medium and fine subsets of the latent code w = {wl}Ll=1,

(with L = 14 for our implementation of StyleGANv2), where the coarse subset corresponds to l ∈ {1, ..., 4},

medium to l ∈ {5, ..., 8}, and fine to l ∈ {9, ..., 14} layers. A few example results of style-mixing experiments

are presented in Fig. 3. We observe that copying part of the latent code that corresponds to the medium

subset (layers 5 to 8) results in images with roughly the same pose as the original (destination) image, while

inheriting the (approximate) clothing style of the source image.

The above observations motivated us to experiment with a different latent-code initialization procedure

than used in the main part of the paper, where the coarse and fine subsets of the latent code are related

to the input image, while the medium subsets exhibit visual semantics that correspond to the provided

text description t. In order to obtain the latent code that best corresponds to the given text description,

we use a sampling approach. Specifically, we generate N (complete) latent codes w(i) that serve as the
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Figure 3: Example results of style–mixing experiments. We take part of the latent code from the

Source image and use it to replace the corresponding part in the latent code of the Destination image. Only

a certain subset of the original code of the Destination image is replaced, while the rest is preserved. We

observe that copying the coarse subset (layers 1 to 4) causes the destination image to exhibit the pose of the

source image. The medium subset (layers 5 to 8) appears most suitable for our task, as it tends to replicate

the clothing style of the source image, while preserving the pose of the destination image. Finally, copying

the fine subset (layers 9 to 14) mostly results in minor changes in the image tone without a major impact

on the clothing or pose of the Destination image.

prototypes for our initialization procedure and are drawn randomly from different parts of the GAN latent

space. Based on the sampled prototypes, we then generate the corresponding CLIP image embeddings

eIi = Ci(G(w(i))) ∈ Rdclip×1. Finally, we construct N = 100, 000 (w(i), eIi ) pairs and store them for later

processing.

When editing an image given the text description t, we process the text with the CLIP text encoder Ct

to obtain the text embedding eT = Ct(t) ∈ Rdclip×1 and compute all N similarities:

Si(e
I
i , e

T ) = cos(eIi , e
T ), (2)

where i ∈ {1, · · · , N}. The target prototype w(i∗), providing the medium latent-code subset is then selected

based on the maximum similarity, i.e., i∗ = argmaxi{Si}. Finally, to obtain the coarse and fine latent-code

subsets that best match the input image, we again leverage the E4e encoder to predict the extended latent

code of the input image before and inject it with the medium latent-code subset of the selected prototype
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Input E4e Image
CLIP

Prototype

Code

Injection

Figure 4: Latent code initialization with style mixing (injection). The examples show the initial-

ization process for an input image and the following text description ”Short-sleeve antimicrobial merino

wool-blend t-shirt in black”. The input image is processed with the E4e model to obtain a latent code that

corresponds to the input image (2nd column). Based on the text description, we identify a suitable CLIP

prototype code (3rd column), which is injected into the computed E4e code, resulting in an image (4th

column) with a similar pose to the input image and clothes resembling the identified CLIP prototype.

Table 2: Quantitative results. The style-mixing (code-injection) initialization procedure improves the

semantic-relevance score, but degrades other performance indicators.

Initialization Semantics (↑) Identity sim. (↑) IoU (↑) FID (↓)

E4e init. (FICE) 0.446 0.926 0.949 60.96

Injection init. 0.468 0.912 0.931 84.03

w(i∗). The complete process is visualized in Fig. 4.

We evaluate the original initialization procedure and the style-mixing (with prototypes) initialization

procedure quantitatively and qualitatively. In Table 2 we show the results across our performance indicators.

We observe that the semantic-relevance score does increase, suggesting that the semantics, expressed in the

text descriptions, are now better integrated into the edited images (on average). However, all the other

performance indicators exhibit a slight degradation, most obviously, the FID score. Nevertheless, there are

several positive aspects of such an initialization technique, as we show in Fig. 5. Note how the alternative

initialization (marked injection) scheme allows us to convincingly infuse semantics that differ considerably

from the original image. With the original initialization process this is not always the case.

5. Detailed Result Analysis

To visualize the VITON results across the target text prompts, we present box plots of each metric in

Fig. 6. For the metrics calculated on individual images (CLIP, IoU, identity similarity), we averaged the

results across the generated image set for each prompt. For the FID score, no averaging is performed, as the
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Input

Long-sleeve cotton sateen shirt in white.

Short-sleeve jersey t-shirt in burgundy.

Short-sleeve semi-sheer silk shirt in white.

FICE Injection FICE Injection

Figure 5: Comparison of latent-code initialization procedures. The figure shows example results

when initializing the latent codes needed by FICE wither with the (style-mixing-based) code injection

and the vanilla E4e initialization used in the main paper. The first row shows the input images. The

rows below show a comparison of the results when either initializing with E4e encoder (FICE) or when

initializing with the code injection. We observe that the code-injection technique for images with certain

characteristics produces better results than FICE. Specifically, the code-injection technique tends to facilitate

better edits with respect to sleeve length and independence of the initial clothing characteristics – see the

results corresponding to the stripe-pattern (left column).

metric is calculated based on comparisons between two image sets. Our analysis reveals the P2P model’s

vulnerability to pose distortion, indicated by frequent IoU outliers. P2P and other GAN-inversion methods

also demonstrate occasional image-quality degradation on certain prompts, as evidenced by the FID results.

In contrast, FICE consistently maintains pose preservation and identity similarity across diverse prompts.
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Figure 6: Box plots of different performance indicators for the tested editing models. The

competing models were tested with hyperparameter settings that resulted in the highest semantic-relevance

score to ensure a fair comparison. Results are reported in terms of variation over the text descriptions. The

individual score for CLIP, identity similarity, and IoU is obtained by averaging the metric over all images for

a given text description. We observe that FICE performs best across all performance indices, while ensuring

the most consistent results.

6. Execution Time

To assess the computational complexity of the models, we measure the execution time required for each

model to perform a single image edit based on an input image and target text prompt. For pSp, E4e,

ReStyle-pSp, and ReStyle-e4e, this measurement includes the time needed to calculate the global latent

direction using the StyleCLIP [8] method, considering both unconditional and target prompts. All the tests

are conducted on an NVIDIA A100 GPU, with execution times averaged over five runs per model.

Table 3 summarizes the results. As expected, the encoder-decoder-based methods demonstrate shorter

execution times than FICE. However, as discussed throughout the experimental section in the main manuscript,

these methods fall short of delivering high-quality results.

It is interesting to note that the most time-consuming part of FICE is the latent-code optimization step,

taking an average of 40.6 seconds. This step presents a clear opportunity for future research to enhance the

FICE’s execution time. Additionally, advancements in hardware capabilities could also further accelerate

this process.
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Model FashionGAN pSp e4e Restyle-pSp Restyle-e4e HyperStyle P2P FICE

Time [in s] 0.04 0.62 0.62 0.87 0.88 0.87 11.23 42.70

Table 3: Model execution time. Encoder-decoder methods demonstrate faster execution times. However,

as discussed above, this speed comes at the cost of reduced image quality. The diffusion-based model (P2P)

and FICE incur longer execution times due to their iterative processes. P2P requires numerous inversions

as well as de-noising (editing) steps, while FICE relies on multiple latent-code optimization steps.

7. Implementation Details

All experiments presented in the paper were run on the Ubuntu 22.04 operating system. For experiments

during the initial FICE development various different GPUs have been used, ranging from NVIDIA GeForce

GTX 1080 Ti to NVIDIA RTX 3090 and NVIDIA A100. All FICE submodels as well as the baselines

were implemented in the PyTorch framework. Additional implementation details are available from https:

//github.com/MartinPernus/FICE.

8. Implications of the Extended GAN Inversion Procedure

The extended GAN inversion procedure of FICE, introduced in the main manuscript, significantly ad-

vances the domain of text-conditioned fashion image editing. By allowing a detailed manipulation of fashion

images, this procedure not only enhances the quality and precision of edited images, but also broadens

the scope of potential applications in other fashion technology related methods [9–23], as well as broader

computer vision methods [24–34].
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