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Abstract

Modern face recognition and segmentation systems, such as all deep
learning approaches, rely on large-scale annotated datasets to achieve
competitive performance. However, gathering biometric data often raises
privacy concerns and presents a labor-intensive and time-consuming
task. Researchers are currently also exploring the use of multispec-
tral data to improve existing solutions, limited to the visible spectrum.
Unfortunately, the collection of suitable data is even more difficult, espe-
cially if aligned images are required. To address the outlined issues,
we present a novel synthesis framework, named BiFaceGAN, capable
of producing privacy-preserving large-scale synthetic datasets of pho-
torealistic face images, in the visible and the near-infrared spectrum,
along with corresponding ground truth pixel-level annotations. The
proposed framework leverages an innovative Dual-Branch Style-based
Generative Adversarial Network (DB-StyleGAN2) to generate per-pixel
aligned bimodal images, followed by an ArcFace Privacy Filter (APF)
that ensures the removal of privacy-breaching images. Furthermore, we
also implement a Semantic Mask Generator (SMG) that produces refer-
ence ground truth segmentation masks of the synthetic data, based on
the latent representations inside the synthesis model and only a hand-
ful of manually labeled examples. We evaluate the quality of generated
images and annotations through a series of experiments and analyze
the benefits of generating bimodal data with a single network. We also
show that privacy-preserving data filtering does not notably degrade the
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image quality of produced datasets. Finally, we demonstrate that the
generated data can be employed to train highly successful deep segmen-
tation models, which can generalize well to other real-world datasets.

Keywords: Image synthesis, Face-based biometric data, Multispectral
images, Generative adversarial networks

1 Introduction

Deep learning approaches nowadays present the backbone of many state-of-
the-art solutions across a variety of biometric tasks [1–4]. However, to achieve
competitive performance such models require large-scale training datasets
appropriate for the task at hand. Despite the current availability of online
datasets, the collection and sharing of biometric data is becoming increas-
ingly more difficult, due to growing privacy and copyright-related concerns and
restrictions [5, 6]. Recently, strict data regulations even led to the retraction
of valuable biometric datasets, in their entirety or in parts, due to the use of
personal data without clear consent and other ethical issues [7–9]. Alterna-
tively, manually gathering the required amount of biometric data is extremely
time-consuming and labor-intensive, especially if the task requires semantic
ground truth pixel-level annotations [10, 11]. Here, the consent agreement
should also be phrased carefully, to allow for the use of collected data in various
potentially-unforeseen research directions.

Meanwhile, novel biometric research is exploring ways of utilizing multi-
spectral data to further improve current deep learning solutions, which are
predominantly based on visible spectrum images [12–18]. For instance, many
important cues are present in the near-infrared spectrum and not in the visible
spectrum, and vice versa [19, 20]. Combining both data sources thus has clear
potential in various biometric recognition and segmentation approaches. Unfor-
tunately, large-scale multispectral datasets of aligned images are rather scarce
and even more difficult to gather, due to the need for multiple imaging sensors
and complex camera setups to enable simultaneous image capturing [21–23].

To address the lack of biometric datasets and the growing privacy concerns
that accompany their distribution, researchers are considering the use of syn-
thetic data to train various deep learning approaches [24–26]. This solution
has recently gained ground, due to the rapid development of deep generative
models, such as Generative Adversarial Networks (GANs) [27, 28]. Modern
Style-based GAN approaches have enabled the synthesis of diverse photo-
realistic images [29, 30], even when trained on limited reference data [31],
thus making them suitable for use on smaller scale datasets. Several proce-
dures have also been developed to produce pixel-level semantic labels of the
generated images with minimal human intervention by exploiting the latent
information of GANs [32, 33]. Despite these advances, the application of gener-
ative methods in multispectral-based biometrics has mostly remained limited
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to cross-spectral image translation [34–36], while the actual simultaneous
generation of multispectral data has remained poorly discussed [37].

Inspired by the increasing need for large-scale multispectral datasets, we
present in this chapter, a novel bimodal generative framework, called BiFace-
GAN, which extends our previous BiOcularGAN [37] approach to the more
complex face modality with diverse characteristics, e.g. variations in pose,
age, ethnicity, and gender. The BiFaceGAN framework enables the synthesis
of privacy-preserving photorealistic bimodal face images, in both the visi-
ble (VIS) and the near-infrared (NIR) spectrum, accompanied by ground truth
pixel-level annotations, as seen in Figure 1. To enable the generation of near-
per-pixel aligned bimodal data from a small-scale training dataset of poorly
aligned images, we utilize an innovative Dual-Branch StyleGAN2 design (DB-
StyleGAN2) [37] and a custom two-phase training regime, designed based on
the insights obtained from our previous architecture [37]. We also introduce a
novel privacy-preserving filtering component based on the ArcFace model [38],
called ArcFace Privacy Filter (APF), which ensures the generation of privacy-
preserving datasets, by removing image samples whose identities match the
identities of real subjects from the DB-StyleGAN2 training set. The framework
also includes an auxiliary Semantic Mask Generator (SMG) component, which
exploits semantic-rich latent information within the DB-StyleGAN2 model to
produce accurate ground truth segmentation masks. We evaluate the data pro-
duced by our proposed framework through a series of experiments. First, we
analyze the synthesis capabilities of the framework, in terms of image qual-
ity and diversity, with the use of the multispectral Tufts Face dataset [22].
Next, we explore the ability of privacy-based data filtering to produce privacy-
preserving datasets and also investigate its effects on the image quality of the
generated datasets. Lastly, we examine the utility of the generated ground
truth segmentation data, by using it to train segmentation models and evaluate
how well they perform on other real-world face datasets.

Overall, we make the following key contributions:

• We introduce a novel framework capable of generating privacy-preserving
high-quality labeled bimodal face datasets of convincing and aligned images
in both the visible (VIS) and the near-infrared (NIR) spectrum, along with
corresponding ground truth pixel-level semantic annotations.

• We extend the existing Dual-Branch StyleGAN2 approach [37] to the more
complex face modality and propose a custom training regime that enables
stable training even on poorly aligned face datasets.

• We introduce a novel privacy-preserving data filtering step, ArcFace Privacy
Filter (APF), which ensures that identities in the synthetically generated
datasets do not match the real subjects of the Dual-Branch StyleGAN2
training dataset, whilst retaining image quality.

• We demonstrate that creating ground truth segmentation masks based on
the bimodal data generation process results in better pixel-level labels than
other unimodal approaches. In addition, we show that segmentation models
perform better when utilizing data from both VIS and NIR domains.
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Fig. 1 Samples produced by the proposed BiFaceGAN framework. The framework
generates high-quality privacy-preserving near-per-pixel aligned visible (VIS) and near-
infrared (NIR) images accompanied by ground truth pixel-level annotations.

2 Related work

In this section, we review work closely related to the proposed BiFaceGAN
framework. We position our contribution with respect to existing research on
image generation and specifically the generation of face images, as well as the
automatic creation of labeled datasets.

2.1 Image generation

The rapid evolution of image synthesis techniques in the past decade was
largely enabled by the emergence of deep generative models, most notably Gen-
erative Adversarial Networks (GANs) [27]. This machine learning architecture
consists of two neural networks, the generator and the discriminator, which
compete against each other to facilitate the creation of photorealistic images.

Several works have since then expanded on the GANmodel. Methods aimed
at further improving the quality and resolution of synthetic images ranged from
utilizing multiple discriminators [39] to progressively learning the generation
process [40]. To address problems with training instability, researchers devel-
oped new regularization methods [41, 42] and utilized custom distance metrics
for comparing synthetic and real distributions [43, 44]. Control over features of
the generated images was also improved with the use of additional class label
inputs [45]. Unfortunately, despite significant progress and extensive analysis,
the inner workings of the models and the origin of certain features were not
well understood [46].

To alleviate these issues a novel Style-based GAN model, known as Style-
GAN, was proposed by Karras et al. [28], inspired by advances in style-transfer
approaches. To achieve unmatched performance the authors split the genera-
tor into the mapping and the synthesis network. The first determines the style
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of images within an intermediate latent space, while the latter relies on this
style information to generate images. This in turn allows for better control
over the image synthesis process.

Karras et al. [29] have since then addressed various artifacts in the pro-
duced images, e.g. blob-like shapes and location preference of features, by
redesigning the building blocks of the generator, in the new approach named
StyleGAN2. Later, the authors also focused on enabling smoother interpola-
tion across the feature space by solving artifacts related to textures sticking
to image coordinates rather than the underlying generated surfaces [30].

To reduce the immense amount of required data for training successful
models, Karras et al. [31] also proposed the use of image augmentations dur-
ing training. They introduced a novel Adaptive Discriminator Augmentation
mechanism (ADA), which adaptively applies geometric and color transforms to
images before the discriminator so that the augmentations do not leak to the
generator. This lowers the required amount of training data by several orders
of magnitude, thus enabling new practical use cases, namely in image-based
biometrics, due to the small size of datasets.

2.2 Synthesis of biometric data

The application of generative methods in the field of biometrics has attracted
attention in recent years, especially due to increasing privacy concerns related
to collecting and sharing of biometric data [5, 6]. This interest is further
supported by the lack of available large-scale biometric datasets, suitable for
training deep recognition and segmentation models [11, 23].

To address these permeating issues, generative methods such as GANs [27]
have been applied in a variety of tasks and approaches. Data de-identification
methods present a possible solution, however, the anonymized data is still
limited by the scale of the original dataset [6]. In comparison, by utilizing
modern GAN models to generate completely new synthetic data we are able
to create privacy-preserving datasets of high-quality and diversity [25].

Zhang et al. [24] explored the suitability of synthetic StyleGAN-based face
images for recognition methods. They observed only minor differences between
real and synthetic samples with modern face quality assessment approaches.
Shen et al. [47] also performed a human-based study and showcased that even
human individuals can be fooled by synthetic face images generated by modern
generative methods. Recently, Qiu et al. [48] analyzed the performance gap
between face recognition models trained on either real data or synthetic data
produced by GANs. They identified it was caused by poor intraclass variations
and the domain gap between real and synthetic images. To address this they
introduced the SynFace GAN-based model which relied on identity and domain
mixup between real and synthetic data during its training.

Boutros et al. [49] proposed a novel unsupervised approach for training
recognition models on synthetic datasets. To achieve this, they utilized GANs
to not only generate synthetic images but also induce face-changing augmen-
tations. They improved the traditional training paradigm by maximizing the
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similarity between two augmented views of the same image while minimizing
the similarity to other images. This enables training without labeled datasets
and, in turn, increases the potential value of synthetic datasets.

Boutros et al. [25] also proposed an approach for generating labeled face
datasets of synthetic identities for purposes of developing face recognition mod-
els. To this end, they relied on the use of the novel StyleGAN2-ADA model [31],
which they conditioned on identity class labels. In their work, they analyzed
the identity transfer from generator training to the generated data as well as
the identifiability of the authentic data in the trained models.

Unfortunately, the generation of multispectral face data has, to the best
of our knowledge, not been adequately explored despite the growing research
interest in multispectral solutions, due to the valuable cues available in the non-
visible light domains [13, 17, 23]. The small scale and scarcity of multispectral
face datasets along with the poor alignment of data present a difficult obsta-
cle for training generative methods. These issues are less prominent with the
ocular modality, due to the design of custom sensors. In our previous work [37]
we investigated the synthesis of multispectral ocular data and introduced the
first bimodal StyleGAN-based framework (BiOcularGAN) for generating vis-
ible and near-infrared spectrum data along with corresponding segmentation
mask. Through a series of experiments, we showcased the clear potential of
utilizing synthetic data for training modern deep segmentation approaches.

In this work, we build on previous approaches and extend the application
of generative models to poorly aligned multispectral face datasets. In addition,
we explore the generation of privacy-preserving data with the use of current
recognition technologies and present a novel BiFaceGAN framework for syn-
thesis of privacy-preserving aligned visible and near-infrared face images with
accompanying fine-grained ground truth segmentation masks.

2.3 Semi-supervised segmentation

The generation of semantic segmentation masks represents an extensively
studied task in computer vision. Prevalent deep models [50, 51] rely on super-
vised learning to solve this task. However, to achieve competitive performance
such methods require domain-specific large-scale annotated datasets, which are
labor-intensive and time-consuming to gather. Thus, researchers are explor-
ing semi-supervised ways of utilizing the power of generative models to create
segmentation masks and reduce the amount of human involvement.

Several GAN-based approaches have been developed to produce accurate
segmentation masks with a limited amount of pixel-level labeled images along
with a larger set of weak annotations. Souly et al. [52] replaced the discrim-
inator of a conditional GAN with a multi-class classifier, which acted as the
segmentation network at test time. Hung et al. [53] instead treated the gen-
erator as the segmentation network. Based on an input image, it produced a
probability map of semantic labels. Recently, Mittal et al. [54] introduced one
of the first approaches, which relied only on the small set of pixel-level training
samples. The approach utilized both a generator-based segmentation network
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as well as a separate multi-label classification branch, to address both low-level
and high-level segmentation errors.

More recent approaches investigated the simultaneous creation of syn-
thetic image and segmentation mask pairs. To achieve this they relied on
the novel StyleGAN [28] architecture. Li et al. [32] proposed that the latent
representation inside the image-synthesis model could be utilized to create
corresponding segmentation masks. They introduced a novel SemanticGAN
model, which relied on a separate label synthesis branch and two discriminator
networks. The labeling branch was trained separately, due to the limited data
regime. The model achieved incredible segmentation performance with only
less than a hundred labeled samples. Zhang et al. [33] proposed an alternative
StyleGAN-based framework, named DatasetGAN, which relied on extracting
latent features from the synthesis network and passing them to an ensemble
multi-layer perceptron (MLP) classifier. By utilizing a split training process
for the StyleGAN and the ensemble classifier, they achieved state-of-the-art
results and required only a handful of annotations. Pakhomov et al. [55] built
on the DatasetGAN framework [33] and presented a method which does not
require any labeled training samples. To achieve this they instead applied
k-means clustering to the extracted latent feature vectors. Unfortunately, this
resulted in overall lower segmentation accuracy and blob-like artifacts.

3 Generation of synthetic face images

In this section, we describe the inner workings of the proposed BiFaceGAN
framework. We begin with an overview of the framework and then define in
detail its main components.

3.1 Overview of BiFaceGAN

The BiFaceGAN framework relies on three main components to enable the gen-
eration of privacy-preserving photo-realistic bimodal images and corresponding
segmentation masks, as presented in Fig. 2. The generation of visible (VIS) and
near-infrared (NIR) spectrum images is handled by the Dual-Branch Style-
GAN2 generative model (DB-StyleGAN2) while associated ground truth
segmentation masks are created by a separate Semantic Mask Generator
(SMG) component. To ensure that privacy constraints are met we also utilize
a separate ArcFace Privacy Filter (APF), to remove images that contain
real-world identities. The produced data can thus be used for training deep
biometric segmentation solutions in a privacy-preserving manner.

The data generation process of the Dual-Branch StyleGAN2 starts with a
randomly sampled latent input z ∈ Z, which is first mapped to an intermediate
latent code w ∈ W by the mapping network f . This representation encodes
the style of the images to be created. The code is then passed to the synthesis
network g that generates pixel-aligned images in the visible and near-infrared
domain xV IS ∈ RW×H×3 and xNIR ∈ RW×H . The generated images are
then filtered by the ArcFace Privacy Filter (denoted as APF ) based on their
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Fig. 2 Overview of the BiFaceGAN data generation process. The Dual-Branch
synthesis network generates pairs of VIS and NIR images, whose style is determined by
the mapping network. The produced samples are then passed through the ArcFace Privacy
Filter (APF), which ensures that the synthetic identities present in the final datasets do not
match the identities of the data used for training the Dual-Branch StyleGAN2 model. To
create ground truth pixel-level labels of the images, the Semantic Mask Generator (SMG)
extracts and exploits internal feature maps of the synthesis network.

identity similarity with the training data of the DB-StyleGAN2 model. Here,
only images that are below a predefined threshold τ are kept. This synthesis
process can more formally be defined as:

{xV IS ,xNIR} = APF ({xV IS ,xNIR}) = APF (G(z)) = APF (g(f(z))). (1)

During this process, the latent feature maps within the synthesis network
are extracted, upsampled, and passed to the Semantic Mask Generator com-
ponent (SMG), which with the use of an ensemble classifier produces ground
truth pixel-level class labels Ω ∈ RW×H , i.e. segmentation masks, as follows:

Ω = SMG(ϕ1(w), ϕ2(w), . . . , ϕk(w)). (2)

Here ϕk(w) represents the mappings between the input w to the synthe-
sis network up to a certain layer k in the synthesis network and SMG(∗)
denotes the mapping of the SMG component from the set of latent features
Φ = (ϕ1(w), ..., ϕk(w)) to the mask Ω. Altogether, the BiFaceGAN frame-
work generates the triplet {xV IS ,xNIR,Ω} based on the input latent code z
sampled from a normal distribution.

3.2 Dual-Branch StyleGAN2 generator

The main component of BiFaceGAN is the Dual-Branch StyleGAN2 genera-
tor G, which follows the dual-branch generator architecture of our previous
BiOcularGAN approach [37]. The model presents an extension of the original
StyleGAN2 generator [29, 31] with the addition of separate synthesis branches
along the synthesis network, as illustrated in Fig. 3 and Fig. 4.
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Fig. 3 Components of the Dual-Branch StyleGAN2 generator. The mapping net-
work determines the style of images generated by the synthesis network. The latter consists of
synthesis blocks tied to a specific resolution, which produce bimodal images. This is achieved
with the tVIS (”toVIS”) and tNIR (”toNIR”) output layers that map high-dimensional
latent representations to image data.

The mapping network f entails 8 fully-connected layers that are responsible
for transforming a 512-dimensional input latent code z into an intermediate
512-dimensional latent code w. Meanwhile, the synthesis network consists of
a series of synthesis blocks, one for each resolution size, ranging from 4× 4 to
256 × 256. Each of the synthesis blocks consists of two separate style blocks
(light gray boxes), corresponding to the auxiliary style inputs received from the
mapping network through affine transformations A. This information is then
embedded into the convolutional weights of the synthesis network with the use
of modulation and demodulation operations [29]. Together, these operations
mimic the effects of the Adaptive Instance Normalization (AdaIN) technique
of the original StyleGAN [28] while ensuring better signal processing.

The forward pass through the synthesis network begins with a constant
input c (4× 4× 512) which is passed to the first 4× 4 style block. Convolution
is then applied, with the use of style-infused convolutional weights. After this,
bias and noise are added, where the latter is obtained via noise broadcast
operations B. The signal is then passed through the Leaky ReLU (LReLU)
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Fig. 4 High-level overview of the Dual-Branch StyleGAN2 generator and dis-
criminator architectures. The generator produces visible and near-infrared images via
separate synthesis branches and tV IS and tNIR convolutional layers. For training, the
model utilizes two separate discriminators, one for each light spectrum. These receive image
data from fV IS and fNIR operations, which transform images back to a high-dimensional
representation. Upsampling and downsampling are represented by Up and Down.

activation function [56]. This process is repeated with each style block and the
resolution is increased with each new synthesis block up to a final resolution
of 256× 256. The network thus consists of 7 consecutive synthesis blocks.

After each synthesis block, the network produces two outputs with the use
of separate 1 × 1 convolutional layers, labeled as tV IS (“toVIS”) and tNIR
(“toNIR”). These layers interpret the latent representation inside the network
as visible and near-infrared spectrum data respectively. These outputs are then
used to form separate VIS and NIR synthesis branches, which upsample and
merge the data to form the final bimodal images. The shallow depth of external
branches allows the latent representation inside the network to carry most of
the semantic-related image information. This is not only favorable in terms
of training but also enables the synthesis of aligned images in two spectra
from a single latent code. The rationale behind such a design is that it allows
the images in both modalities to retain a similar structure of the face while
the high-level appearance, tied to the different imaging sensors, is modeled
in through the shallow output branches, which act as a sort of renderer. The
described bimodal generation process is visualized in Figure 4.

3.3 Dual discriminator networks

The Dual-Branch StyleGAN2 model utilizes two separate discriminators
(DV IS andDNIR) corresponding to images of the two light spectra, as depicted
in Fig. 4. These evaluate whether the produced synthetic images are real or
fake. This assessment allows us to train a model capable of generating pho-
torealistic images in both domains with characteristics representative of the
training distributions. The two discriminators share the same ResNet-like [57]
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downsampling design, following the work of Karras et al. [29]. Furthermore,
we rely on the Adaptive Discriminator Augmentation (ADA) [31] mechanism,
which enables training of GANs in a low-data regime. This is crucial for
enabling the use of generative models on small-scale biometric datasets.

During training, the images produced by the generator are first augmented
with various geometric and color transforms based on an adaptive probability
p following the ADA technique [31]. The altered images are then introduced
to the discriminator through 1 × 1 convolutional layers denoted as fV IS
(“from VIS”) and fNIR (“from NIR”). The data is then passed through a
series of downsampling resolution blocks that contain two convolutional layers
along with a separate residual connection. The final block of the discriminator
contains only a single convolutional layer, which transforms the latent repre-
sentation of the discriminator into a binary decision. Similarly to the generator,
the discriminator architecture consists of 7 resolution blocks in total, each of
which downsamples the resolution by a power of two.

3.4 Dual-Branch StyleGAN2 training

The proposed model deviates from the original StyleGAN2 model [29] with
the dual synthesis branch design, which simultaneously produces matching
bimodal images in the two different light spectra. To train the model we thus
utilize two separate discriminators and a corresponding multi-task adversar-
ial learning objective. This facilitates the generation of photorealistic images
in both domains while allowing the model to produce semantically similar
bimodal images. The learning process is visualized in Fig. 5.

Fig. 5 Training procedure of the Dual-Branch StyleGAN2 component. The model
is trained using two separate discriminators (DV IS and DNIR), one for each light spectrum,
and the corresponding losses (LV IS and LNIR). These are combined into LG to train the
generator G.

To define the adversarial learning objectives with a two-discriminator envi-
ronment, we build on established unimodal learning strategies of StyleGAN-
based approaches. We adopt the Non-Saturating Logistic loss [27] as well as
two regularization methods (R1 [42] and path length regularization [29]). As
is standard practice, we implement the loss function with the soft-plus oper-
ation sp(x) = log(1 + exp(x)). Additionally, we apply regularization in a lazy
manner, i.e. only every 16 mini-batches.
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To train the two discriminators of bimodal images (DV IS and DNIR)
we introduce two separate learning objectives, LV IS and LNIR. These can
formally be defined as:

Lb = sp(−Db(yb)) + sp(Db(xb)) +
γR1

2
E
[
∇Db(yb)

2
]
; b ∈ {V IS,NIR}. (3)

Here yb denotes real (training) images from a given light spectrum b, while
xb represents synthetic images produced with the dual-branch generator G,
following the process defined in Eq. (1). The hyperparameter of the R1 reg-
ularization method is denoted with γR1 and is heuristically computed using
the resolution res and batch size bs as γR1 = 10−4(2res2/bs), as proposed by
Karras et al. [29].

The learning objective of the generator LG combines the two discriminator
learning objectives LV IS and LNIR. However, it only utilizes the terms tied
to synthetic images, i.e. terms involving xb. In addition, it relies on the use of
path length regularization γRPL

[29]. Formally, LG can be expressed as follows:

LG =
∑
b∈B

wb · sp(−Db(xb)) + γRPL
E
(∥∥∥∑

b∈B

∇(xbqb)
∥∥∥− a

)2

. (4)

Here, notations of the previous equation apply. In addition, q represents an
image with normally distributed pixel intensities, a denotes the average of
the computed norm, and weight w controls the influence of each spectrum on
the final loss value. Meanwhile, the path length regularization hyperparam-
eter γRPL

is determined with γRPL
= ln 2/(res2(ln res − ln 2), following the

procedure of Karras et al. [29].

3.5 ArcFace Privacy Filter (APF)

We extend the Dual-Branch StyleGAN2 model with an additional privacy-
preserving filtering step, to address the alarming similarity between identities
of real and synthetic images, observed when training on small-scale biometric
datasets. With this auxiliary step, we are able to prevent privacy-breaching
synthetic images from reaching the final public synthetic datasets. We achieve
this by removing images that surpass a certain similarity threshold with
identities of the DB-StlyeGAN2 training set.

To filter the images our method relies on the recently introduced and
widely-adopted ArcFace recognition model [38], which utilizes the iResNet-101
architecture [57, 58] pretrained on the MS1MV3 dataset [59]. In our work, we
utilize the ArcFace model to construct a novel filtering component (ArcFace
Privacy Filter) for our BiFaceGAN framework.

Once a bimodal image pair has been synthesized by DB-StyleGAN2 we
pass the visible spectrum sample through the ArcFace model to obtain its
512-dimensional feature vector representation AF (x), which contains valu-
able identity information. We then compare the obtained feature vector with
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the feature representations of images from the DB-StyleGAN2 training set to
determine the identity similarity and in turn the overall privacy of the syn-
thetic image. To compare the feature vectors of two images we rely on the use
of the cosine similarity metric [60], which has been extensively used in face
recognition and verification research [38, 61, 62]. The similarity between real
images y and synthetic images x is determined as follows:

similarity(xV IS ,yV IS) =
AF (xV IS) ·AF (yV IS)

∥AF (xV IS)∥∥AF (yV IS)∥
. (5)

The similarity score is then compared to the desired privacy threshold τ , which
determines whether the identities of synthetic images match those of real
images used for training the DB-StyleGAN2 model. To speed up the similarity
evaluation process, we first only compare the generated image with a subset of
representative real images, i.e. frontal facing examples, one for each identity.
In the next step, the synthetic sample is compared to all real images of the
identity which achieved the highest score in the previous step. In comparison,
assessing the similarity with all training images during the data generation
process would be incredibly inefficient at least from a practical sense, especially
since datasets often contain several images of each subject.

For our experiments, we select τ = 0.6 as the privacy threshold, based on
the mean and standard deviations of inter-class similarity as well as qualita-
tive observations when comparing real and synthetic images. Nevertheless, the
threshold can be adapted to achieve the desired privacy of synthetic data.

3.6 Semantic Mask Generator (SMG)

Additionally, we extend the Dual-Branch StyleGAN2 model to also gener-
ate ground truth semantic masks Ω corresponding to the created synthetic
images. To achieve this, we exploit semantic-rich latent feature maps present
within the synthesis network of the generator, inspired by Zhang et al. [33]. To
implement the mapping SMG(∗) in Eq. (2) between latent feature maps and
pixel-level labels, we utilize an ensemble classifier that operates on a per-pixel
level. This process forms the last component of our model, i.e. the Semantic
Mask Generator (SMG), which is depicted in Fig. 6.

As with our previous BiOcularGAN approach [37], we extract latent feature
maps ϕk(w) directly after each Leaky ReLU (LReLU) [56] activation function
in the synthesis network. Here the consecutive number of the LReLU operation
is represented with k while w denotes the intermediate latent code input to
the synthesis network. With this, we obtain semantic-filled latent information
shared by the bimodal face images before they are rendered in a given light
spectrum. This process differs from the DatasetGAN approach [33], which
instead extracts features from the AdaIN operation of the initial StyleGAN [28]
model that no longer exists in StyleGAN2 [31].

The extracted feature maps are then upsampled to the desired image res-
olution and merged to create a W × H × d semantic representation of the
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Fig. 6 Overview of the Semantic Mask Generator (SMG) component. The com-
ponent exploits high-dimensional latent features (ϕ) extracted from LReLU operations of
the DB-StyleGAN2 synthesis network to produce ground truth segmentation masks (Ω)
corresponding to the synthetic images.

produced image. Here W and H dimensions are linked to the image resolution
(in this case 256 × 256) and d represents the length of the combined feature
maps, where the length of each is determined by the resolution of the origin
synthesis block. Higher resolutions yield shorter feature maps, as defined by
the following resolution-length mappings: {4 : 512, 8 : 512, 16 : 512, 32 : 512,
64 : 256, 128 : 128, 256 : 64}. For images of resolution 256 × 256 we extract
13 feature maps, one from each style block. Altogether this forms a tensor of
256×256×4480. Thus, each of the image pixels is linked to a 4480-dimensional
semantic-rich feature vector.

To determine the semantic class of each image pixel based on the cor-
responding feature vector we utilize an ensemble of classifiers, namely an
ensemble of 10 three-layer Multi-Layer Perceptrons (MLPs) but we also exper-
iment with a DeepLab-based classifier [63]. As part of the ensemble, we also
utilize the majority voting strategy to minimize the noisy artifacts in the final
semantic masks. The main advantage of this mask generation process is that
we require only a small set of (at least 1) manually annotated images to train
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an extremely accurate ensemble classifier since each pixel is its own training
sample. More formally, each classifier C in the ensemble is trained using back-
propagation to approximate the mapping C : F 7→ M. Here M = (Ω∗

1, ...,Ω
∗
i )

defines the set of manually annotated segmentation masks Ω∗ of the i syn-
thetic image pairs xV IS and xNIR. Meanwhile, F = (Φ1, ...,Φi) represents the
sets of extracted feature maps belonging to the image pairs, where each set
Φ = (ϕ1, ..., ϕ13) includes all 13 feature maps extracted during the synthesis
of a single image pair.

The Semantic Mask Generator (SMG) represents the last component in our
BiFaceGAN framework, alongside the Dual-Branch StyleGAN2 image synthe-
sis model and the ArcFace Privacy Filter. Altogether these components enable
the generation of endless privacy-preserving pixel-aligned face images in both
the visible and the near-infrared spectrum as well as corresponding ground
truth segmentation masks. Thus, a single forward pass through the framework
yields a data triplet {xV IS ,xNIR,Ω}.

4 Experiments and results

This section is dedicated to the evaluation of the presented BiFaceGAN frame-
work. The following experiments are divided into two core parts, tied to the
assessment of image synthesis capabilities and the evaluation of the generated
ground truth segmentation masks. However, we will first introduce the utilized
face datasets and preprocessing steps, followed by details of the model imple-
mentation and the proposed custom training procedure, as well as the metrics
used for evaluation.

4.1 Experimental setup

4.1.1 Datasets and data preparation

Multispectral biometric datasets are currently still scarce and of small
scale [22], despite recent advances in multispectral biometric research [13, 14].
The majority of these datasets are aimed at multispectral recognition, which
does not necessarily require images in different spectra to match. Thus,
datasets often contain images captured in various environments and at different
time points. However, training our proposed BiFaceGAN framework necessi-
tates well-matching visible and near-infrared image pairs. Unfortunately, none
of the multispectral datasets contain simultaneously captured data. In our
work, we utilized the most suitable of these datasets, this being the multi-
spectral Tufts Face dataset [22], to train and evaluate the image synthesis
component of the BiFaceGAN framework. For evaluating segmentation models
trained on the synthetic data we use the CelebA-Mask-HQ dataset [10], which
includes visible spectrum data along with ground truth segmentation masks.
Characteristics of the two datasets and the preprocessed subsets are presented
in Table 1. Detailed descriptions of the datasets and the preprocessing steps
are provided below.
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Table 1 Overview of face datasets used in experiments. BiFaceGAN is trained and
validated on the multispectral Tufts Face dataset [22], while the visible spectrum
CelebAMask-HQ [10] dataset is used for evaluating the quality of produced data, based on
the performance of an auxiliary segmentation model.

Dataset #Images #IDs Resolution Modality† Purpose‡

Tufts Face [22] > 10, 000 113 3280× 2464 VIS/NIR –
Tufts Face* [22] 2207 104 256× 256 VIS/NIR TR/SV

CelebA [10] 202, 599 10, 177 1024× 1024 VIS –
CelebAMask-HQ [10] 30, 000 – 1024× 1024 VIS –
CelebAMask-HQ* [10] 9357 – 256× 256 VIS SE

* – processed subset, †VIS – visible spectrum, NIR – near-infrared spectrum
‡TR – training, SV – synthesis validation, SE – segmentation experiments

The Tufts Face dataset [22] represents one of the first datasets which
contain a variety of heterogeneous data captured on the same individuals. The
dataset includes images from three different spectra, i.e. visible light, thermal
and infrared, along with a collection of 3D data, video data as well as a set of
computerized sketches. In total, the database contains over 10, 000 images of
113 participants. However, for the purposes of our research, we rely only on the
visible (VIS) and the near-infrared (NIR) image subsets. These were captured
in a semi-circle around sitting individuals with a custom quad-camera setup,
under either diffused light for VIS images or under 850 nm Infrared 96 for NIR
images. From the subsets, we removed images captured in the two maximum
angle positions, i.e. side-profile images, to ensure that all faces contained key
features, namely two eyes. In addition, we cropped the images to only contain
the face modality, as seen in Fig. 7, and removed blurry images in which
subjects moved. The final subset thus includes only 2207 VIS-NIR image pairs
of 104 subjects.

Unfortunately, despite the custom camera setup, the visible and near-
infrared images were not taken simultaneously. This resulted in significant
VIS-NIR image pair misalignment, which makes training the proposed Dual-
Branch StyleGAN2 model near impossible. Thus, we further processed the
cropped images to ensure better alignment. First, we utilized a standard face
detection procedure, based on the Histogram of Oriented Gradients (HOG) [64]
and a Linear Support Vector Machine (SVM) [65], to obtain facial landmarks
for each image, namely the eye positions. Then we computed the angle between
the centroids of the eyes based on their image coordinates with the use of
the arc-tangent function. We also computed a custom scaling factor, based on
the initial distance between eye centroids and their desired distance, to ensure
a similar face size across images of different identities and in turn a form of
inter-class alignment. The obtained angle, scale, and the midpoint between
the eye centroids are then used to define an affine transform that produces the
final image. This process allows us to obtain slightly better aligned visible and
near-infrared image pairs, as seen in Fig. 7, and also reduce additional com-
plexity of training data e.g. face position. The final preprocessing steps resize
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the images to a resolution of 256× 256 and split the dataset is in a 9 : 1 ratio
into the training and holdout sets. Here the training set is used to train the
Dual-Branch StyleGAN2 model, while the holdout set is used to evaluate the
image synthesis quality of the model.

Fig. 7 Preparation steps of the Tufts Face dataset [22]. The original images are first
cropped to an intermediate resolution. Eye positions are used to define an affine transform
to rotate and scale the image to ensure better-aligned visible light and near-infrared image
pairs and less irrelevant variance in the training data.

CelebAMask-HQ [10] is a large-scale visible spectrum dataset that con-
tains hand-annotated semantic labels of a high-quality subset of images from
the CelebA dataset [40, 66]. The initial CelebaA dataset [66] consists of 202, 599
images of 10, 177 identities, while the smaller high-quality CelebaA-HQ sub-
set [40] contains only 30, 000 images. CelebAMask-HQ [10] extends on this
with the addition of pixel-level semantic labels of 19 semantic classes. For the
purposes of our experiments, we simplify the dataset to only 10 key semantic
face regions, i.e. eyes, nose, lips, eyebrows, ears, neck, hair, face skin as well
as glasses and background. To achieve this, we remove images which contain
classes that are not represented in images of the Tufts Face dataset [22], i.e.
hats, earrings, and teeth. In addition, we merge certain classes such as the
lower and upper lip, or left and right eye. Lastly, we resize the images to a
resolution of 256× 256. The final subset thus contains 9357 annotated images.
It is used to evaluate the performance of segmentation models trained on the
synthetic data produced by our model.

4.1.2 Implementation and experimental details.

The entirety of the proposed BiFaceGAN framework is implemented in
PyTorch [67] and is made publicly available1. The main component of the
framework, i.e. the Dual-Branch StyleGAN2 model, was constructed upon the
SytleGAN2-ADA implementation [31]. The output resolution (256× 256) was
chosen based on several factors, including the quality of available datasets as
well as the training time and system requirements. Nevertheless, the proposed

1Implementation available at: https://github.com/dariant/BiFaceGAN

https://github.com/dariant/BiFaceGAN
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framework can also be easily expanded to produce higher-resolution images by
increasing the depth of the synthesis and discriminator networks.

The proposed Dual-Branch StyleGAN2 model utilizes similar training
parameters and procedures as the original StyleGAN2 implementation [31]. To
train the model, we first initialize its core part with weights pretrained on the
FFHQ [28] dataset. This excludes the near-infrared synthesis branch. Training
is then performed with the multi-task adversarial learning objectives (defined
in Eq. (4)) in batch sizes of 16. To update the model the Adam optimizer [68]
is chosen, with a learning rate of 0.0025 as well as β1 = 0, β2 = 0.99, and
ϵ = 10−8, selected based on previous research [31].

To allow for a fair comparison of models, we train all models up to a limit of
2500 kimgs (thousand images) and use the best performing model, in terms of
validation Fréchet Inception Distance (FID) [69]. The models are trained until
training diverges or up to 2000 kimgs. To improve the stability of training on
small-scale face datasets (in our case only 2207 images) we rely on the Adaptive
Discriminator Augmentation (ADA) technique [31] to artificially increase the
number of training samples.

This approach ensures stable training in a unimodal environment, e.g.
training on only visible spectrum images. However, we observe that this is
not the case for training the bimodal model, as demonstrated in Fig. 8 by
the orange learning curve that depicts the generator loss LG from Eq. (4).
In comparison with the unimodal version (simply denoted as StyleGAN2),
the bimodal version (DB-StyleGAN2) experiences clear training divergence.
The loss rapidly increases and the quality of images drops significantly. This
transpires early during training, so even the best models up to that point do
not produce satisfactory image quality. We believe that this issue most likely
occurs due to the poor alignment of visible and near-infrared image pairs in
the training dataset since we did not encounter similar issues with bimodal
ocular image generation, where the datasets were near-perfectly aligned [37].

Bimodal training improvements. To address this, we propose sep-
arating the training of the model into two learning phases, which utilize
differently weighted visible light (VIS) and near-infrared (NIR) components of
the generator loss function. The proposed approach is represented by the green
learning curve in Fig. 8. The first phase is aimed at producing high-quality VIS
images. For this purpose, we set the NIR-based and VIS-based loss weights to
wNIR = 0.1 and wV IS = 1.0. This stabilizes the training process, while also
allowing the model to still learn a low-quality estimation of the NIR images.
While the loss does slightly increase, this is linked to the introduction of arti-
facts and noise in the NIR images. The first phase of training thus results in
high-quality VIS images along with low-quality and less detailed NIR images.

Once the desired quality is achieved in the visible spectrum, in terms of
FID scores [69] and qualitative image assessment, the model is switched to
the next phase. The goal of the second phase is to improve the quality of NIR
images while retaining the VIS quality from the previous phase. To achieve
this, we use equal learning weights wNIR = 1.0 and wV IS = 1.0. When the
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phase change occurs the generator loss also increases, due to the low quality
of current NIR images. However, the loss rapidly drops as various artifacts
are removed from the produced NIR images. The proposed two-phase learning
regime allows us to avoid the explosion of loss observed in the single-phase
approach and facilitates more stable model training. In turn, this enables the
synthesis of aligned high-quality visible and near-infrared spectrum image pairs
even if the training samples are poorly aligned.

Fig. 8 Generator loss LG comparison of different training procedures. The pro-
posed two-phase procedure allows more stable training of the DB-StyleGAN2 model on
poorly aligned data.

To train the Semantic Mask Generator (SMG) component of the
BiFaceGAN framework we utilize the Cross-Entropy learning objective and the
Adam optimizer [68], with a learning rate of 10−3. For training, we manually
annotate 8 synthetic images with 10 key face regions. To train each classifier
of the ensemble we randomly sample image pixels from the data in batches
of 64. Training of each classifier is stopped once performance on the synthetic
validation set does not improve in 50 batches.

Synthetic masks produced by the SMG component are evaluated in a series
of segmentation experiments, where we use them to train a state-of-the-
art DeepLab-V3 model [70]. To train the segmentation model we again rely on
the Cross-Entropy learning objective and the Adam optimizer [68] and train
the model with a batch size of 8 and an initial learning rate of 10−4. We reduce
the learning rate by a factor of 10 when no validation loss improvement is
observed in 5 epochs. Training is then stopped once the learning rate reaches
10−8 or if no improvements are observed in 10 consecutive epochs.

Experimental Hardware. The training and evaluation of the models is
conducted on a Desktop PC with an AMD Ryzen 7 5800X CPU with 32 GB of
RAM and two Nvidia RTX 3060 GPU cards, each with 12 GB of video RAM.
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4.1.3 Evaluation metrics

We evaluate the proposed approach both in terms of the quality of generated
images and the accuracy of produced ground truth segmentation masks. For
this purpose, we rely on a variety of evaluation metrics, discussed below.

Synthetic image quality. To evaluate the overall quality of synthetic
images produced by the proposed model we rely on several metrics which are
based on features extracted from deep learning approaches, i.e.:

• Fréchet Inception Distance (FID) [69], which estimates the difference
between real and synthetic distributions based on image features extracted
from the Inception-v3 model [71]. The mean and the covariance matrix of
real and synthetic feature vectors are then used to determine the similar-
ity of distributions. This metric has become widespread in image synthesis
research [28, 30, 31] because the extracted features mimic the human percep-
tion of images well. However, it has been demonstrated, that large sample
sizes are required to avoid potential score over-estimation [72]. This can be
problematic due to the small scale of our datasets.

• Learned Perceptual Image Patch Similarity (LPIPS) [73], an alter-
native method that uses latent image features from the VGG network [74]
pretrained on ImageNet [75] to determine the similarity of image pairs. To
compare the entire datasets we randomly sample real and synthetic images
and use the mean and standard deviation values of obtained results.

• Certainty Ratio Face Image Quality Assessment (CR-FIQA), a
state-of-the-art method that is specifically designed for evaluating face image
quality. It utilizes a ResNet-101 backbone [57] to predict the relative classi-
fiability of a face image and in turn, its quality. The model is trained on a
classification task on the CASIA-WebFace dataset [76] with the use of the
ArcFace loss [38] and a custom Certainty Ratio loss. The latter is based on
cosine similarity [60] between the image sample and the corresponding class
center as well as the nearest negative class center. Once the model is trained
it can be used to estimate the quality of unseen samples.

• t-distributed Stochastic Neighbor Embedding (t-SNE) [77] data
dimensionality method, which enables comprehensible visual comparison of
the real and synthetic distributions. To allow for comparison, images are
first expressed as feature vectors with a ResNet-101 model [57] pretrained
on ImageNet [75]. From the distribution of feature vectors, the method then
constructs a representative distribution in a lower-dimensional space. To
estimate the proximity of distributions the method utilizes the Kullback-
Leibler divergence (KL-divergence) [78] measure. This measure is
then minimized within the t-SNE approach to obtain a low-dimensionality
embedding that can be visualized in a 2D space.

Segmentation metrics. We conduct our segmentation experiments with
the use of several established metrics for evaluating the accuracy of ground
truth segmentation masks [2, 79–81]. These metrics being F1 score, Intersec-
tion over Union (IoU) and total Pixel Error (P.E.), where the first two
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can both be expressed in terms of Precision and Recall scores. The F1 score
represents the performance as a harmonic mean of the two scores, whereas IoU
results are closer to the worst-case performance. In comparison, Pixel Error
simply measures the percentage of misclassified image pixels and is as such
affected by class imbalance.

4.2 Bimodal synthesis evaluation

In the first set of experiments, we explore the image generation capabilities
of our BiFaceGAN framework. To this end, we compare synthetic images pro-
duced by our framework with real images. To obtain the synthetic images we
train the Dual-Branch StyleGAN2 (DB-StyleGAN2) component on the pre-
processed images of the Tufts Face dataset [22] at a resolution of 256 × 256.
In addition, we utilize the proposed ArcFace Privacy Filter (APF) to produce
privacy-preserving images. Hereafter, the combination of both components will
be denoted as DB-StyleGAN2-APF.

4.2.1 Visual evaluation

In this section, we perform qualitative analysis of the generated face images
to showcase the potential of our proposed BiFaceGAN framework. In Fig. 9
we depict both real training samples of the Tufts Face dataset [22] and filtered
synthetic samples produced by the DB-StyleGAN2-APF.

Training samples Synthetic samples

(Tufts Face dataset) (DB-StyleGAN2-APF)
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Fig. 9 Real and synthetic image samples in the visible (VIS) and the
near-infrared (NIR) spectrum. DB-StyleGAN2-APF is capable of producing privacy-
preserving photorealistic images, aligned in both imaging domains.
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As can be observed, our DB-StyleGAN2-APF model is able to generate
extremely realistic synthetic face image samples, in both the visible (VIS) and
the near-infrared (NIR) spectrum. The generated images are of high quality
and variety, and the portrayed faces have characteristics that closely resemble
the training data. Moreover, the model is capable of accurately reproducing
convincing details, such as specular reflections in the eyes, as well as stochastic
features like hair placement and texture. The model also generates matching
bimodal image pairs which are well-aligned.

Importantly, the high quality of images is achieved despite the small scale
of the training dataset. This capability is extremely valuable, due to the cur-
rent state of multispectral biometric datasets as well as the vital insight and
additional cues that multispectral data can provide to various deep learn-
ing solutions. In addition, the produced synthetic images preserve the privacy
of training subjects, due to the auxiliary ArcFace-based filtering process,
which removes synthetic images whose identities match the ones in the DB-
StyleGAN2 training set. With this, our model also addresses the growing
privacy-related concerns.

4.2.2 VIS-NIR pair alignment

Next, we further investigate the alignment of VIS and NIR face images by
analyzing composite images in the YCbCr color space. These are created by
replacing the luma channel (Y) of the VIS image in the YCbCr color space with
the NIR image. Images obtained with this procedure exhibit changes in the
overall color characteristics, as seen in Fig. 10. Importantly, they also clearly
illustrate image pair misalignment in the form of color artifacts.

Training samples Synthetic samples

(Tufts Face dataset) (DB-StyleGAN2-APF)

Fig. 10 VIS-NIR alignment in real and synthetic images. Shown are composite
images, where the luma channel of the YCbCr representation of the VIS image was replaced
by the NIR image. Note that DB-StyleGAN2 generates per-pixel aligned image pairs.
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Prominent misalignment artifacts can be observed in the training sam-
ples of the Tufts Face dataset [22], despite the intricate preprocessing steps
described in Sec. 4.1.1. The artifacts are most clear near the edges of the faces,
as seen in the zoomed-in examples in Fig. 10, as well as in discolored clothing.
These are mostly caused by the movement of subjects during the capturing
process since VIS and NIR images were not gathered simultaneously.

Despite the poor alignment of the training data, our Dual Branch Style-
GAN2 model (DB-StyleGAN2) is still able to generate well-aligned VIS-NIR
image pairs, which display virtually no alignment artifacts, Even in the worst
examples, only faint misalignment artifacts can be detected near the edges of
the face, as seen in the rightmost image of Fig. 10. These results reveal that our
model is able to overcome a certain amount of training data misalignment and
still produce near-per-pixel aligned synthetic image pair samples. This synthe-
sis capability is attributed to the semantic-rich latent representation inside the
core DB-StyleGAN2 architecture that is shared by the two shallow synthesis
branches, which generate images in the VIS and NIR light spectrum.

4.2.3 Privacy-preserving data filtering

In the following section, we explore similarities between the synthetic and
training data, as well as analyze the effects of the ArcFace Privacy Filter (APF)
component on the produced data. Specifically, we compare the identities of
the DB-StyleGAN2 training samples with identities of the unfiltered and fil-
tered synthetic datasets. For this comparison, we utilize features obtained from
the ArcFace model [38] and evaluate their likeness with the cosine similarity
score [60]. We compute this similarity between each generated image and all
training samples.

In Fig. 11 we present two synthetic samples from the unfiltered datasets
with the highest similarity score (middle columns) along with their most simi-
lar training samples (left columns). As can be seen, the DB-StyleGAN2 model
is able to produce data that is distinct from the training set, despite shar-
ing many visual characteristics. Unfortunately, the identities of the produced
images resemble the identities of the DB-StyleGAN2 training data, which is
also reflected in the high similarity scores (0.892 and 0.897). Thus, the individ-
uals from the training set could be identified with the use of our synthetic data,
despite the overall data being distinct. In turn, this raises privacy concerns
regarding the use of the produced synthetic data.

To address this, we propose the use of an auxiliary ArcFace Privacy Fil-
ter (APF) component during the data generation process, as described in
Sec. 3.5. This component filters the data produced by the DB-StyleGAN2
model based on the computed similarity scores and a privacy threshold hyper-
parameter τ , which is set to 0.6 for the purposes of these experiments. To
evaluate the effect of the proposed privacy filter, we also present in Fig. 11
synthetic samples from the filtered set (right columns) which are most similar
to the selected training samples. We can observe that the identities from the
resulting filtered dataset differ drastically from the identities of the real samples
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used to train the DB-StyleGAN2 model. This can be seen in shape differences
of many face components, e.g. differences in the jawline, nose, ears, eyes, and
lips. Interestingly, changes can also be observed in the clothing. These obser-
vations are also supported by the lower similarity scores (0.598 and 0.589).
Most importantly, we note that the presented images remain realistic and con-
vincing, despite their lower similarity score. These observations suggest that
we are able to filter the data based on identity similarity without lowering the
overall quality of images, at least from a qualitative perspective, and in turn,
allow the model to generate high-quality privacy-preserving synthetic data.

Fig. 11 Identity similarity with and without privacy-preserving filtering. Training
samples of the Tufts Face dataset [22] (left) are accompanied by the most similar synthetic
samples from either the dataset obtained with the proposed ArcFace Privacy Filter (right)
or from the unfiltered one (middle). The cosine similarity scores between ArcFace features
of training and synthetic images are provided below the images.

4.2.4 State-of-the-art comparison and ablation study

In the following section, we perform an in-depth analysis of the image gen-
eration process. We conduct an ablation study of the Dual-Branch (DB)
synthesis design (Sec. 3.2) and the ArcFace Privacy Filter (APF) component
(Sec. 3.5) and analyze their effects on the overall quality of produced images.
To this end, we train two additional single-spectrum StyleGAN2 models, one
for each light spectrum. We also utilize synthetic data produced by the models
introduced in the previous section, i.e. the bimodal Dual-Branch StyleGAN2
(DB-StyleGAN2) and the bimodal version with the ArcFace Privacy Filter
component (denoted as DB-StyleGAN2-APF). In total, each dataset used in
the analysis consists of 5000 synthetic samples. Metrics used throughout the
experiments are presented in Sec. 4.1.3.

We first evaluate the overall quality and realism of the produced synthetic
images with two metrics prominently used in the field of image generation,
Fréchet Inception Distance (FID) [69] and Learned Perceptual Image
Patch Similarity (LPIPS) [73]. To compare the performance of different
generative model designs, we compute the mentioned metrics between the
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synthetic datasets, produced by the models, and the training and validation
sets of the Tufts Face dataset [22]. We report the obtained results in Tab. 2.
To provide additional context to the values, we also present scores acquired
between the training and the holdout sets.

Table 2 Comparison of image quality in terms of FID and LPIPS scores.
Evaluation is performed between 5000 synthetic samples produced by each generative
model design (StyleGAN2, DB-StyleGAN2, and DB-StyleGAN2-APF) and the training
and holdout sets. Lower scores are better.

Data from LS FID (T) FID (H) LPIPS (T) LPIPS (H)

StyleGAN2 VIS 14.259 31.342 0.485± 0.114 0.484± 0.112
StyleGAN2 NIR 28.554 36.189 0.599± 0.069 0.598± 0.069

DB-StyleGAN2
VIS 13.452 30.492 0.483± 0.113 0.482± 0.111
NIR 17.206 28.554 0.386± 0.098 0.387± 0.099

DB-StyleGAN2-APF
VIS 16.322 32.686 0.483 ±0.117 0.479± 0.115
NIR 18.532 29.144 0.386 ±0.101 0.397± 0.097

(H) vs. (T)
VIS 23.229 0.493± 0.113
NIR 16.918 0.397± 0.097

(LS) – light spectrum; (T) – training set; (H) – holdout validation set

From the results, we can observe that our Dual-Branch design is able to
compete with the image quality of the original single-spectrum StyleGAN2
approach, whilst generating two matching images in the VIS and NIR spec-
trum at once. Moreover, our DB-StyleGAN2 actually achieves better results
in terms of both metrics and both light spectra. This difference is most notice-
able in the FID results, especially for the NIR domain, where the original
StyleGAN2 achieves a score of 28.554 and the Dual-Branch version a score of
17.206. A considerable difference between the two also exists in terms of the
LPIPS metric, even when considering the large standard deviation values. The
cause of this drastic performance difference, in terms of NIR data generation,
likely lies in the quality difference between VIS and NIR training samples. The
training VIS images contain more detail than their NIR counterpart. Thus, we
suspect that utilizing both VIS and NIR images provides more valuable seman-
tic information to the bimodal model during training and inference, which is
reflected in the generation of higher-quality NIR images. Meanwhile, the orig-
inal single-spectrum model is trained only on the lower-quality NIR samples,
resulting in lower-quality synthetic data. In comparison, when discussing the
VIS generation task, only a slight difference is present between the two model
designs, both in terms of FID and LPIPS scores. However, the bimodal model
still achieves better image quality, likely due to the additional cues present in
the NIR spectrum.

Interestingly, we observe that the addition of the ArcFace Privacy Fil-
ter (APF), which acts as a privacy-preserving filtering step, only slightly
lowers the quality of synthetic images produced by the DB-StyleGAN2 model.
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This quality reduction is only observed with the FID metric and even then,
the scores on the NIR domain still drastically surpass scores of the original
StyleGAN2 model. Meanwhile, LPIPS results demonstrate that the effect of
removing images with high identity similarity does not affect the quality of
images. When comparing images with the training set, the only difference is
noted in the standard deviation of scores. Surprisingly, a slight improvement
in LPIPS scores is actually observed with the addition of the APF component
on the holdout set and the VIS domain. Overall, the obtained results showcase
that our proposed approach is able to produce privacy-preserving data without
negatively affecting the quality of the synthetic images in a meaningful way.

We also note that all generative models achieve better FID and LPIPS
scores on the training set (columns denoted with (T)) than the holdout set
(last row), at least in the VIS domain, though results are comparable also
in the NIR domain. This suggests that the synthetic models are capable of
generating data that shares more similarities with the training data than the
training data does with the holdout set. In comparison, scores between the
synthetic and the holdout set (columns denoted with (H)) are lower, as is to
be expected. Nevertheless, the finding still demonstrates the potential of the
proposed models for generating realistic images.

To obtain a more comprehensive understanding of synthetic image dis-
tributions we utilize the t-distributed Stochastic Neighbor Embedding
(t-SNE) method [77] to visualize the distributions in a lower-dimensionality
space. In Fig. 12 we present t-SNE plots for each light spectrum which
include 200 randomly sampled images from each of the synthetic datasets
and the training set. In addition, we report in Tab. 3 the Kullback-Leibler
divergence (KL-divergence) values [78] used for the plots.

Table 3 Kullback-Leibler (KL) divergence values of the t-SNE plots in Fig. 12.
Divergence values are computed between training sample images and the synthetic images
produced by the discussed generative models (i.e., StyleGAN2, DB-StyleGAN2, and
DB-StyleGAN2-APF). Lower values are better.

Kullback-Leibler divergence from the training set

Data from VIS NIR

StyleGAN2 (unimodal) 1.785 2.988
DB-StyleGAN2 (bimodal) 1.150 1.417

DB-StyleGAN2-APF (bimodal) 1.392 1.331

From the plots, we can observe that the synthetic distributions of all
presented model variations overlap fairly well with the training set in the
visible spectrum, at least from a qualitative perspective. Kullback-Leibler
divergence values, which are the base for the plots, reveal that both bimodal
DB-StyleGAN2 approaches achieve better scores and in turn, better overlap
with the training set than the single-spectrum StyleGAN2 model. Similarly
to previous observations, the addition of the privacy filter, in the form of the
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APF component, reduces the overlap. Despite this, the approach still outper-
forms the single-spectrum one. Conversely, in the near-infrared spectrum plot,
we can observe a clear separation between the single-spectrum distribution
and the rest. This qualitative lack of overlap is also further supported by the
Kullback-Leibler divergence values. Interestingly, we also note that the addi-
tion of the APF component actually reduces the divergence scores, pointing
to a possible increase in similarity with the training set.

Visible spectrum Near-infrared spectrum

Training StyleGAN2 DB-StyleGAN2 DB-StyleGAN2-APF

Fig. 12 Comparison of synthetic and training image samples with t-SNE
plots (in 2D). Plots are generated with 200 randomly sampled images from synthetic
sets produced by the discussed generative models (StyleGAN2, DB-StyleGAN2, and DB-
StyleGAN2-APF) and the training set.

Last but not least, we also evaluate the quality of produced images with
a state-of-the-art biometric approach, known as CR-FIQA [62], which is
specifically designed for assessing the quality of face images. We compute the
CR-FIQA score for each image in the VIS domain and report the score dis-
tributions of each synthetic and real dataset in Fig. 13 along with their mean
and standard deviation values.

Similarly to previous results, the CR-FIQA distributions of all three gen-
erative approaches in the VIS domain share the same distribution shape and
display only slight differences overall. In comparison, the training and valida-
tion distributions are skewed more to the right, have a drastically lower peak,
and have notably higher standard deviation values. The highest mean value
is observed with the training distribution. Meanwhile, the validation set actu-
ally includes more outliers that form the tail on the left, which results in a
lower mean value. When comparing the original StyleGAN2 model with its
bimodal Dual-Branch alternative, we note that the distribution of the DB-
StyleGAN2 approach has a slightly lower peak and is slightly more skewed
to the left. Despite these differences, the mean value remains near identical,
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while the standard deviation interestingly slightly drops. The filtering pro-
cess of component APF skews the distribution slightly more to the left, which
results in a lower mean value but also a lower standard deviation. Nevertheless,
the privacy filter does not have a drastic influence on the overall distribu-
tion of quality scores, thus showcasing its suitability and potential for future
privacy-preserving synthesis approaches.

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
CR-FIQA scores

0.0

0.5

1.0

1.5

2.0

Pr
ob

ab
ilit

y 
de

ns
ity

Real Train.
(1.742 ± 0.263)
Real Val.
(1.724 ± 0.266)
StyleGAN2
(1.734 ± 0.232)
DB-StyleGAN2
(1.733 ± 0.229)
DB-StyleGAN2-APF
(1.718 ± 0.226)

Fig. 13 Image quality comparison in terms of CR-FIQA score distributions.
Distributions of the Tufts Face dataset [22] (training and holdout set) are reported along-
side distributions of 5000 synthetic samples produced by the discussed generative models
(StyleGAN2, DB-StyleGAN2, and DB-StyleGAN2-APF). The mean and standard deviation
values are also reported in the legend. Higher scores are better.

4.3 Segmentation evaluation

The second set of experiments is tied to the evaluation of the semi-supervised
label generation process, enabled by the Semantic Mask Generator (SMG)
component of the proposed BiFaceGAN framework. Specifically, we investi-
gate how the generation of bimodal data as well as privacy-preserving filtering
affects the quality of corresponding masks. We also explore how the perfor-
mance of current deep segmentation models can be improved with the use of
bimodal data. Lastly, we analyze the choice of pixel classifiers used in the SMG
component of BiFaceGAN.

Throughout the following segmentation experiments, we utilize 8 synthetic
face images annotated with 10 semantic face regions, i.e. eyes, nose, lips, eye-
brows, ears, neck, hair, face skin as well as glasses, and background. These
are labeled based on the combined information provided from the VIS and
NIR imaging domains, due to the different cues that they provide. The anno-
tated synthetic samples are then used to train the SMG component that is
tied to a different image generation model depending on the experiment. The
BiFaceGAN framework, which entails these components, is then used to gen-
erate synthetic samples with corresponding ground truth segmentation masks,
which are then used to train a state-of-the-art DeepLab-V3 [70] segmentation
model. Here 5000 synthetic samples are used for training and 500 for valida-
tion. The trained segmentation model is then tested on the visible spectrum
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CelebAMask-HQ dataset [10] since the bimodal Tufts Face dataset [22] does
not contain any ground truth annotations. The models are evaluated in terms
of Intersection Over Union (IoU), F1 score, and overall Pixel Error (P.E.). The
performance of the trained model is then used as a proxy to determine the
quality of synthetic data used for training.

4.3.1 State-of-the-art segmentation comparison

In the following section, we compare the mask generation process with its ini-
tial implementation, the state-of-the-art dataset generation framework, known
as DatasetGAN [33]. However, to allow for a fair comparison, we update
DatasetGAN to also utilize the single-spectrum StyleGAN2 model (and not
StyleGAN1). This ensures that the main difference between the approaches
is the bimodal synthesis ability, which in turn influences the latent represen-
tation inside the DB-StyleGAN2 model that is used to create masks of the
synthetic data. It should also be noted, that the DeepLab-V3 segmentation
model [70], used for evaluation, is trained only using the VIS spectrum data
and corresponding masks, due to the spectral limitations of the visible light
evaluation dataset CelebAMask-HQ [10].

Table 4 Cross-dataset segmentation performance. DeepLab-V3 is trained on
synthetic Tufts Face data produced by different StyleGAN2 models and evaluated on the
CelebAMask-HQ dataset [10]. Synthetic data of our BiFaceGAN framework enables better
segmentation performance than the data of the state-of-the-art DatasetGAN framework.

DeepLab-V3 trained on synthetic data, evaluated on CelebAMask-HQ

Framework Images from Classifier IoU ↑ F1↑ P.E. ↓

DatasetGAN StyleGAN2 eMLP 0.573± 0.094 0.679± 0.094 0.166± 0.085
BiFaceGAN DB-StyleGAN2 eMLP 0.587± 0.098 0.689± 0.096 0.158± 0.094
BiFaceGAN DB-StyleGAN2-APF eMLP 0.584± 0.098 0.686± 0.096 0.156± 0.091
BiFaceGAN DB-StyleGAN2-APF eDL 0.578± 0.098 0.681± 0.096 0.154± 0.091

(eMLP) – ensemble of Multi-Layer Perceptrons; (eDL) – ensemble of DeepLab-V3 models
(↑) – Higher is better; (↓) – Lower is better

Segmentation results on the evaluation dataset with differently trained
DeepLab-V3 segmentation models [70] are presented in Tab. 4. From the
results of the first two rows, we can discern that the DeepLab-V3 model trained
on the data produced by our BiFaceGAN framework achieves better segmen-
tation performance in terms of all metrics. This is also supported by score
distribution plots in Fig. 14. Here, we can see that the BiFaceGAN distri-
butions of F1 and IoU scores are skewed more to the right and in turn also
have a lower peak than the DatasetGAN distributions. Meanwhile, the pixel
error distribution is skewed more to the left, indicating lower overall error
scores. Sample segmentation results in Fig. 15 reveal that the segmentation
model trained on the synthetic data of our BiFaceGAN is able to better clas-
sify the hair and neck semantic classes. The produced masks also have more
rounded edges that better fit the different face features. In addition, regions
with shadows are better classified, e.g. regions under the eyes or chin.



Springer Nature 2021 LATEX template

30 BiFaceGAN: Bimodal Face Image Synthesis

0.4 0.5 0.6 0.7 0.8 0.9
F1 score

0

2

4

6

Pr
ob

ab
ilit

y 
de

ns
ity

0.3 0.4 0.5 0.6 0.7 0.8
IoU score

0.0 0.1 0.2 0.3 0.4
Pixel error

StyleGAN2 (MLP)
DB-StyleGAN2 (MLP)

DB-StyleGAN2-APF (MLP)
DB-StyleGAN2-APF (DeepLab)

Fig. 14 Cross-dataset segmentation performance comparison. Distributions of seg-
mentation performance scores corresponding to results in Tab. 4. Results were obtained with
the DeepLab-V3 model trained on the synthetic data produced by different StyleGAN2-
based models and evaluated on the CelebAMask-HQ dataset [10].
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Fig. 15 Qualitative segmentation comparison of DeepLab-V3 trained with either
data produced by DatasetGAN or BiFaceGAN. The models are evaluated on samples
of the CelebAMask-HQ dataset [10]. Results correspond to the first two rows of Tab. 4.

Overall these results suggest that the bimodal nature of the DB-StlyeGAN2
model leads to a more semantic-rich latent representation within the generative
model, based on which the SMG component is able to generate higher-quality
training segmentation samples. This in turn enables the training of better
performing biometric segmentation models, which can distinguish between
different semantic regions of the face.

4.3.2 Training with privacy-preserving data

Next, we investigate how the addition of privacy-preserving filtering with the
ArcFace Privacy Filter (APF) influences the quality of masks generated by the
SMG component. To this end, we create an additional synthetic dataset with
DB-StyleGAN2, however, this time we also utilize the APF component to filter
out privacy-breaching images. The obtained data is then again used to train
the DeepLab-V3 segmentation model as was done in the previous section.

From segmentation performance scores presented in Tab. 4 we can observe
that filtering the training synthetic data hardly influences the accuracy of
the final segmentation model. Even with a slight difference, the model still
outperforms the model trained on data of the DatasetGAN framework. This
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is also reflected in the distribution plots of Fig. 14. Here the distributions (in
green) closely follow the distributions of the unfiltered approach. The main
difference is a slight drop in the distribution peak that is redistributed to the
left side in the F1 and IoU plots. Interestingly, the filtering process actually
positively influences the pixel error score, in terms of both mean and standard
deviation values as well as the overall distribution shape. This could be caused
by slight improvements in the background semantic class since this metric is
most influenced by the majority class.

The obtained results suggest that privacy-preserving synthetic data can be
utilized instead of the initial privacy-breaching synthetic data to train deep bio-
metric solutions, such as segmentation models, without any notable difference
or detrimental effects on the performance of the models.

4.3.3 Choice of pixel classifiers

As part of our work we also experiment with replacing the ensemble MLP
classifier of the Semantic Mask Generator (SMG) component with the decoder
network of the DeepLab-V3 model [70]. To evaluate this approach we used
the privacy-preserving BiFaceGAN framework and generated an additional
synthetic dataset with the updated SMG component. Then an auxiliary
DeepLab-V3 segmentation model was trained on the produced data and
compared to the previously obtained models in Tab. 4 and Fig. 14.

As can be seen, the proposed change negatively impacts the segmentation
accuracy in terms of IoU and F1 scores, which both display lower mean values
and distributions skewed more to the left. Interestingly, the change does how-
ever lower the overall pixel error, as can be seen by the lower mean value and
a higher distribution peak. This is again possibly caused by the improved seg-
mentation of the background class. Unfortunately, this, in turn, likely reduces
the segmentation accuracy of other smaller but more important classes, at
least based on the negative effect on the first two metrics. The obtained results
thus further support the choice of the initial pixel classifier, i.e. the ensemble
MLP proposed by Zhang et al. [33].

4.3.4 Segmentation with VIS and NIR data

To showcase the potential of multispectral approaches, we also investigate the
effect of utilizing both the visible (VIS) and the near-infrared (NIR) spectrum
data for the purposes of segmentation. To this end, we train two DeepLab-V3
segmentation models on the privacy-preserving synthetic dataset created by
the BiFaceGAN framework with the DB-StyleGAN2-APF method. Here, one
segmentation model is trained only on the synthetic VIS images and the corre-
sponding masks, whilst the other is trained on both the synthetic VIS and NIR
images, along with the ground truth segmentation masks. Notably, the latter
DeepLab-V3 model was also adapted to accept input images with a channel
size of 4. Unfortunately, due to the lack of suitable annotated multispectral
datasets, we must rely solely on qualitative analysis to evaluate the difference
between the approaches. Thus, we use the two trained segmentation models
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on the validation set of the Tufts Face dataset [22] and display the obtained
segmentation results in Fig. 16.

As can be observed, the use of both VIS and NIR data allows the segmen-
tation model to better distinguish between certain semantic regions, such as
the neck region with facial hair and the normal hair region, e.g. second and last
image. Furthermore, it also enables better segmentation of the glasses region,
as can be seen in the first image, as well as the segmentation of hair or lack
thereof, e.g. third and fifth image. This is likely due to the additional semantic
information that is present within the NIR images that enables the model to
make better segmentation decisions. Overall, the results showcase the potential
of utilizing multispectral data to improve biometric segmentation solutions.

V
IS

V
IS

&
N
IR

Fig. 16 Segmentation improvements when utilizing bimodal (VIS & NIR)
instead of unimodal (VIS) data. Two DeepLab-V3 models are trained on privacy-
preserving synthetic data of BiFaceGAN, either on the VIS data or on the entire VIS & NIR
data pair. Performance is then evaluated on the validation part of the Tufts Face dataset [22].

4.4 Real-world training and inference time comparison

Lastly, we analyze the training and inference times of the different BiFaceGAN
components and compare them to the current state-of-the-art. In Tab. 5 we
report both the time required to reach convergence of models during training
as well as the time required to produce a single sample, averaged over 1000
samples. Results are obtained on the hardware described in Sec. 4.1.2.

From the first two rows of Tab. 5, we can discern that our bimodal Dual-
Branch StyleGAN2 design takes longer to train than the original unimodal
StyleGAN2. However, it should be noted, that the bimodal version is trained
on two times the number of images (VIS and NIR) and in a longer two-phase
regime, which ensures training stability. Thus, an increase in overall training
time is expected. Interestingly, during inference, our model is able to compete
with the speed of the unimodal approach, as it requires only around 22%
longer (14.898ms instead of 12.114ms on average) to generate two images in
the two different imaging domains. Meanwhile, generating two images with
the unimodal model would necessitate two forward passes with two separate
spectrum-specific models.
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Table 5 Training and inference time of each component. Our DB-StyleGAN2
model produces two images whilst matching the speed of the unimodal StyleGAN2 model.
Privacy-preserving filtering slows the generation process, however, the production of
corresponding ground truth segmentation masks still takes the longest.

Components Training time† Inference time [ms]

StyleGAN2 ∼ 50 hours 12.114± 1.541
DB-StyleGAN2 ∼ 87 hours 14.898± 2.092

ArcFace Privacy Filter / 80.976± 3.996

SMG (MLP) ∼ 12 minutes 982.755± 12.010
SMG (DeepLab-V3) ∼ 1 minute 5227.822± 67.051

†Approximate estimate

When also utilizing the proposed ArcFace Privacy Filter (APF) compo-
nent to ensure privacy-preserving data synthesis, we can observe that this
additional filtering step slows the data generation process by 80.976ms on
average. In comparison with the speed of the above-discussed image synthesis
models, this takes significantly longer. Nevertheless, the perks of producing
privacy-preserving data far outweigh the increase in inference times, as the
data generation process is still relatively fast. It should also be noted that the
speed of the proposed privacy-preserving filtering step is highly dependent on
the size and structure of the real-world dataset.

In our proposed BiFaceGAN framework, the Semantic Mask Genera-
tor (SMG) component takes the longest during inference, by a large margin.
The synthesis of privacy-preserving images takes less than 100ms, while the
production of corresponding ground truth segmentation masks with the use of
an ensemble MLP classifier takes around 1000ms. The alternative approach,
which utilizes the decoder of the DeepLab-V3 model, performs even worse in
terms of speed, while not surpassing the quality of masks produced by the
ensemble MLP. It does, however, take less time to train. Overall, the reported
results reveal, that improvements to the SMG component would benefit the
speed of the data generation process the most.

5 Conclusion

In this chapter, we investigated the generation of synthetic multispectral face
data to address the data requirements of various biometric deep learning
solutions and the increasing privacy concerns connected to biometric data.
To this end, we presented a novel generative framework, called BiFaceGAN,
which is capable of producing high-quality privacy-preserving synthetic face
images in the visible and the near-infrared spectrum along with correspond-
ing ground truth pixel-level annotations. To produce visually convincing and
near-per-pixel aligned bimodal images, the framework relies on a Dual-Branch
StyleGAN2 model, which uses a custom training regime to combat training
instability, caused by poorly aligned real-world datasets. During inference,
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the model utilizes an additional filtering step, implemented with the ArcFace
Privacy Filter (APF) component, which ensures privacy-preserving image syn-
thesis whilst retaining image quality. These two components are accompanied
by an auxiliary Semantic Mask Generator (SMG) that exploits latent features
of DB-StyleGAN2 to produce accurate fine-grained ground truth segmentation
masks. Through a series of experiments, we showcased that our framework is
capable of competing with current unimodal synthesis approaches in terms of
image quality while producing privacy-preserving images in two different light
domains at once. Furthermore, we demonstrated the utility of the produced
synthetic data, by training both visible spectrum and multispectral-based seg-
mentation models that could generalize well to real-world data. As part of our
future work, we plan to investigate the generation of specific synthetic identi-
ties found in the latent space to enable training of recognition approaches in a
privacy-preserving manner. We also plan to explore domain transferring pos-
sibilities between the visible and the near-infrared spectrum to allow for the
generation of new multispectral datasets.
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A., Peer, P., Štruc, V.: Privacy-enhancing face biometrics: A comprehensive
survey. IEEE Transactions on Information Forensics and Security (TIFS) 16,
4147–4183 (2021)

[7] Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: A dataset and bench-
mark for large-scale face recognition. In: European Conference on Computer
Vision (ECCV), pp. 87–102 (2016). Springer



Springer Nature 2021 LATEX template

BiFaceGAN: Bimodal Face Image Synthesis 35

[8] Kemelmacher-Shlizerman, I., Seitz, S.M., Miller, D., Brossard, E.: The
MegaFace benchmark: 1 million faces for recognition at scale. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4873–
4882 (2016)

[9] Yang, K., Qinami, K., Fei-Fei, L., Deng, J., Russakovsky, O.: Towards fairer
datasets: Filtering and balancing the distribution of the people subtree in
the ImageNet hierarchy. In: ACM Conference on Fairness, Accountability, and
Transparency (FAccT), pp. 547–558 (2020)

[10] Lee, C.-H., Liu, Z., Wu, L., Luo, P.: MaskGAN: Towards diverse and interactive
facial image manipulation. In: IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5549–5558 (2020)
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