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Abstract

Micro-expression recognition (MER) is a challenging computer vision problem, where the limited amount of

available training data and insufficient intensity of the facial expressions are among the main issues adversely

affecting the performance of existing recognition models. To address these challenges, this paper explores

a transfer–learning enabled MER model using a densely connected feature extraction module with mixed

attention. Unlike previous works that utilize transfer learning to facilitate MER and extract local facial-

expression information, our model relies on pretraining with three diverse macro-expression datasets and,

as a result, can: (i) overcome the problem of insufficient sample size and limited training data availability,

(ii) leverage (related) domain-specific information from multiple datasets with diverse characteristics, and

(iii) improve the model adaptability to complex scenes. Furthermore, to enhance the intensity of the micro-

expressions and improve the discriminability of the extracted features, the Euler video magnification (EVM)

method is adopted in the preprocessing stage and then used jointly with a densely connected feature extraction

module and a mixed attention mechanism to derive expressive feature representations for the classification

procedure. The proposed feature extraction mechanism not only guarantees the integrity of the extracted

features but also efficiently captures local texture cues by aggregating the most salient information from

the generated feature maps, which is key for the MER task. The experimental results on multiple datasets

demonstrate the robustness and effectiveness of our model compared to the state-of-the-art.

Keywords: Micro-expression recognition, transfer learning, dense connections, mixed attention, Euler video

magnification

1. Introduction

Facial expressions are the primary means of expressing emotions in day–to–day interactions [1, 2, 3].

Micro-expressions represent a special type of facial expression that corresponds to involuntary facial move-
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ments triggered by emotional stimuli [4]. Micro-expressions not only reflect the hidden emotions of human

beings in extreme situations, but can also be used to validate their authenticity [5]. The development of5

automatic micro-expression recognition (MER) techniques has led to the successful deployment of MER

technology in criminal investigations, job interviews, and clinical medicine among others [6]. Unfortunately,

the extremely short duration (from 1/25 to 1/3 seconds) of micro expressions, their weak intensity, and

sparsity across time all contribute to the difficulty of the research on this topic [7].

Initial studies on MER focused predominantly on the analysis of complete video clips [8, 9], resulting in10

time-consuming analyses that had to deal with data redundancy and complex models capable of extracting

micro-expression information from sequences of frames. Following the insights from Ekman [10], later tech-

niques (e.g., [11]) shifted attention to the analysis of so-called apex frames, i.e., video frames corresponding

to the peak intensity of the facial expressions, which are now generally considered to be better suited for

an automated analysis of the micro-expressions. These techniques not only address data redundancy in an15

explicit manner, but also lead to computationally simpler recognition models. Although the handcrafted

features utilized with early apex-frame based methods performed reasonably well, the overall performance

still warranted additional research efforts.

With the excellent performance of deep learning and convolutional neural networks (CNNs) in face recog-

nition and other face-related vision tasks [12, 13, 14], deep-learning-based methods also received widespread20

attention for the micro-expression recognition problem [15]. While pioneering (deep learning) work in this

area produced only modest performance improvements compared to prior techniques due to the limited

amount of training data available, subsequent works reported better results by exploring different strategies.

The work in [16, 17], for example, aimed to mitigate the impact of the small number of samples available

for training by using shallow network/model architectures with smaller numbers of parameters that could25

be estimated reliably from limited training data. However, the features extracted from such models were

shown to be inferior to the features extracted from deeper models. In the pursuit of optimizing MER model

performance, several innovative works have been applied to MER in recent years. These include, for instance,

transformer-driven MER models [18], MER approaches based on dual-stream (local and global) attention [19],

and MER frameworks leveraging local facial behaviors learning from enhanced expression flow [20], among30

others. The work in [21, 22, 23] used transfer learning to eliminate the impact of insufficient training data

and achieved good results. However, unlike the application of the transfer learning in other areas [24, 25, 26],

source domain datasets [21] with an insufficient overlap in terms of data characteristics of the MER task as

well as features with limited expressive power [22, 23] still affected the final performance. In [27], the Euler

video magnification (EVM) algorithm was adopted to enhance the intensity of facial expressions and, conse-35

quently, to improve the feature strength by amplifying the motion in video. A spatial attention mechanism

was also used to contribute toward the acquisition of important local texture features in [28]. While the

effectiveness of motion amplification and attention mechanisms on MER was demonstrated in these works,

important (local) texture information, key for recognizing micro-expressions, was still lost during the feature
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extraction process.40

From the above discussion, it follows that answers to the following two key questions are critical for

further improving MER performance:

1) How can transfer learning be utilized better to accomplish MER?

2) How can the feature extraction model better capture local texture information while minimizing the

loss of important MER cues in the computed feature representations?45

To address the first question, existing transfer-learning methods either used: (i) standard ImageNet

pretraining, e.g., [21], which often led to sub-optimal MER performance due to the mismatched between the

source and target domain, or (ii) a single macro-expression dataset to initialize the model parameters for

MER, e.g., [22, 23], which adversely affected the adaptability of the learned MER model and its applicability

to micro-expression data captured in different environments and settings. With the model proposed in this50

paper, we improve on the outlined solutions, by merging three diverse macro-expression datasets into a

mixed dataset for model pretraining. This strategy not only better captures the input data variability but

also improves the multi-scene adaptability of the final model. Furthermore, we use the EVM algorithm

to improve the intensity of micro-expressions, which further reduces the appearance gap with the macro-

expression source datasets.55

To extract discriminative local features, prior methods used simple spatial attention mechanisms and

feature extraction structures that typically resulted in a considerable loss of discriminative information [28].

To address these issues, we propose a novel feature extraction approach in this work that combines densely

connected structures with a novel mixed (channel-spatial) attention mechanism, ensuring the integrity of the

output features and the ability of the model to focus computational resources on discriminative cues from60

the input data.

In summary, we make the following main contributions to this paper:

• We propose a novel strategy for MERmodel pretraining that exploits multiple (diverse) macro-expression

datasets and ensures that a reliable, adaptive, and competitive MER model can be learned using limited

amounts of (micro-expression) training data. Additionally, we use Euler Video Magnification (EVM)65

to further improve the correspondence between the source (i.e., macro expression) and target (i.e.,

micro-expression) domains.

• We introduce a novel feature extraction approach built around a densely connected feature extrac-

tion module and a mixed (channel-spatial) attention mechanism that is capable of extracting highly

discriminative features for micro-expression recognition.70

• We show the benefit of using the proposed pretraining strategy and feature extraction module for the

MER task in comparative experiments with state-of-the-art techniques from the literature and report

highly competitive performance on multiple benchmarks.
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The rest of the paper is organized as follows: In Section 2, works in the literature that are close to our

proposed approach are summarized; In Section 3, our proposed approach is presented; A comprehensive75

experimental evaluation is reported in Section 4; Conclusions and future research directions are discussed in

Section 5.

2. Related Work

Since the pioneering work of Pfister et al. [29], research on micro-expression recognition (MER) has seen

significant attention from the computer-vision and affective-computing communities. Early studies in this80

area relied heavily on handcrafted features to solve the MER task. Li et al. [30], for example, proposed

to approach the problem by combining local binary pattern (LBP-TOP) from three orthogonal planes with

traditional off-the-shelf classifiers. Inspired by the success of LBP-TOP, other researchers proposed extensions

of the original technique, and improved the recognition accuracy by reducing the redundancy of the LBP-

TOP operator [31]. To improve the accuracy of MER, new image descriptors, such as SCCLQP [9] and85

HIGO-TOP [32], were also proposed based on the LBP-TOP features. Concurrently, novel features, such as

MDMO [33], were introduced and observed to ensure competitive performance. Most of these methods were

applied to video sequences and, as a consequence, were also computationally expensive. The work in [10]

analyzed the process of micro-expression recognition from a psychological perspective and found that the

information conveyed by micro-expressions at their peak intensity is highly reflective of the current emotional90

state. Liong et al. [34] verified this assertion through comprehensive experiments and proposed using apex

frames instead of video sequences as the basis for automated MER. Unfortunately, the performance of this

early apex-frame based model did not surpass the best-performing video-based techniques. Nonetheless, the

introduction of the concept of apex frames represented a major milestone for MER research.

Given the advances in deep learning and its impressive results in various problem domains [35, 36, 37,95

38, 39], researchers started looking increasingly at deep-learning solutions to improve the accuracy of micro-

expression recognition. Platel et al. [15], for instance, applied a deep convolutional model to MER. With

this approach, a deep convolutional neural model used earlier for face recognition was adapted for micro-

expression recognition using a single target dataset. However, due to the lack of available training data in the

single target dataset, the learned model failed to meet expectations. Consequently, the accuracy of this model100

on the CASME II dataset was lower than the accuracy of methods relying on handcrafted features. Peng et

al. [40] proposed the dual-branch CNN network for MER and provided an important experimental basis for

the future study of shallow networks trained with limited amounts of data. Quang et al. [41] introduced a

capsule network to solve the small sample size problem. Liong et al. [16] designed a shallow three-stream

three-dimensional network (STSTNet) in combination with optical flow characteristics. By processing the105

onset frame and apex frame of the input samples, three characteristics of optical strain, horizontal optical

flow, and vertical optical flow were obtained and finally classified. Gan et al. [42] proposed to use optical

flow features from the apex frame network (OFF-ApexNet) for MER. OFF-ApexNet first extracted optical
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flow features corresponding to micro-expressions in the apex frames, and then performed feature extraction

through a CNN model. Later, Xia et al. [17] proposed using a combination of low-resolution inputs and110

recursive convolution networks (RCNs) to emulate the training characteristics of a shallow network with

a comparably deeper model. Although a series of shallow networks were proposed in the works discussed

above, which resulted in notable performance improvements, MER models still exhibit weaker performance

than comparable models used in other visual recognition tasks.

In order to further reduce the impact of the small sample sizes available for training, Peng et al. [21] used115

transfer learning to provide a better starting point for model fine-tuning. However, due to the ImageNet pre-

training, the correspondence between the feature distributions of the source and the target domain samples

was insufficient, adversely affecting the final results. Later, Ben et al. [22, 23] proposed two transfer-learning

methods based on LBP features. Although good results were reported, the main problem with these ap-

proaches was that they over-considered local information, while ignoring the overall appearance information.120

In this paper, we aim at (i) expanding the amount of available training data, (ii) increasing the relevance

between the source and target domains during transfer learning, and (iii) improving the adaptability of the

model to multiple scenarios and settings, and propose to utilize three macro-expression datasets from different

environments for pretraining, and then to fine-tune the pretraining model for the MER task. Additionally,

inspired by the work in [27], we also propose to integrate the EVM algorithm into the transfer-learning125

procedure to further reduce the mismatch between macro- and micro-expression data.

Figure 1: Overview of the proposed micro-expression recognition (MER) method. The method relies on a powerful transfer

learning strategy using multiple macro-expression datasets and Euler Video Magnification (EVM) and a novel feature extraction

technique that uses a densely connected feature extraction module and mixed attention to derive a rich and descriptive set of

image features for recognition. The figure is best viewed in color.

For feature extraction, Zhou et al. [28] used a model that combined a ResNet with spatial attention.

While promising results were reported, the extracted features still lacked expressiveness and discriminability.

Furthermore, because features based on optical flow are highly suitable for encoding motion information, such

features were still favored by the majority of researchers. Some works chose to extract optical flow features130

from the entire video segment [15, 32, 40, 43], while others used onset frames, apex frames, and offset frames

for calculating optical-flow based representations [44, 45]. Even though competitive results were achieved, the

lack of local texture information and the high computational complexity are among the main shortcomings
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of such techniques. Conversely, in this paper, we design a feature extraction model that combines a densely

connected structure and a mixed attention mechanism to alleviate most of the limitations discussed above.135

The model ensures that highly descriptive features are extracted from the input data through the densely

connected processing structure, and the low number of parameters allows for the design of a model with

sufficient depth. At the same time, the addition of the mixed attention mechanism also provides the model

with a significant ability to capture local texture information. As we show in the experimental section, our

design leads to highly competitive recognition performance when compared to state-of-the-art methods from140

the literature.

3. The Proposed Method

This section first provides an overview of our method and then introduces the preprocessing part and

feature extraction module of the proposed approach in detail. Finally, the emotion classification module of

the model is described.145

3.1. Method Overview

As illustrated in Figure. 1, the proposed method consists of three main stages aimed at: (i) preprocessing

and transfer learning, (ii) feature extraction, and (iii) micro-expression (emotion) recognition. In the first

stage, the input data is preprocessed and the transfer-learning approach with the Euler Video Magnification

(EVM) algorithm is used. Next, pretrained weights (learned from macro-expression datasets) are utilized150

to initialize the MER model, which is then fine-tuned using the available micro-expression data. In the

second stage, the EVM-enhanced apex frames (corresponding to a micro-expression) are fed as input to the

feature extraction model. The feature extraction model itself is divided into two parts: (i) the first is a densely

connected feature extraction module, and (ii) the second is a mixed attention module. The feature extraction

model utilizes a densely connected module as its backbone to extract facial representations pertinent to the155

MER task. The design of this model facilitates feature reuse and allows our model to learn highly descriptive

features for MER without losing important information [46]. We deploy the mixed attention module into the

skip pathways of the densely connected module to focus computational resources on emotional information,

thereby improving the performance of the feature extractor. In the mixed attention module, the channels of

the extracted feature maps are first reweighted according to their importance. Next, the channel-weighted160

feature maps are fed to the spatial attention module, which again weights the entries with respect to their

importance, however, this time, the weighting is performed across the spatial dimension. In the last stage, the

features are passed as input to the classification module that makes the final decision regarding the micro-

expression class through a final processing step implemented by a fully-connected layer and the softmax

classification function.165
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3.2. Preprocessing

In the process of MER, there are two major challenges: (i) The first is the small number of samples

available in existing micro-expression datasets, and (ii) the second is that micro-expressions have a lower

range of motion compared to macro-expressions.

In order to address challenge (i) and (ii), a transfer learning method is adopted in the preprocessing part170

of our approach. Here, three macro-expression datasets, i.e., CK+ [47], RAF-DB [48], FER-2013 [49], are

used to conduct pretraining and find a good initialization for the parameters of the recognition model. These

pretrained weights are then used for initialization before the training (fine-tuning) on the micro-expression

datasets. Because both macro- and micro-expressions are produced by facial deformations caused by the

synergistic action of 42 facial muscles, the characteristics of the appearance changes of macro- and micro-175

expressions are very similar. Consequently, pre-training on the macro-expression datasets can allows the

feature extractor to learn (meaningful and informative) prior data representations, that eventually lead to

improved performance on the targeted micro-expression datasets after finetuning.

The approach leverages apex frames as input instead of entire video sequences, with the goal of improving

training efficiency by reducing the temporal complexity of the input data for the feature extractor. Addi-180

tionally, the EVM algorithm, which is instrumental in tackling challenge (ii), significantly strengthens the

expresivnes of the micro-expression samples. This enhancement reduces the domain divergence between the

source domain (macro-expressions) and the target domain (micro-expressions), which is essential for the effi-

cacy of transfer learning. Specifically, with the proposed approach, multi-frame images in the micro-expression

datasets are first sampled from the input video sequences. This is done to cater to the characteristics of EVM,185

which requires multi-frame data as input. Next, the EVM algorithm is used to process all of the sampled

multi-frame images. To avoid amplifying environmental noise, a target frequency-band that ensures that

only the desired motion is magnified needs to be chosen. Since the ideal frequency range for micro-expression

movements is usually from 0.1 Hz to 0.4 Hz [50], we set this frequency range as the amplification range of

the EVM algorithm.

Figure 2: Comparison of macro-expressions and micro-expressions (before and after) Euler Video Magnification. The use of the

magnification technique serves a dual purpose in our work: (i) it improves the intensity of micro-expressions making them easier

to recognize, and (ii) it reduces the appearance difference between macro- and micro-expressions, thus, facilitating efficient

transfer learning.

190
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The EVM procedure used for the presented process is formally described as follows [51]:

Pixel (x, 0) = p (x) , (1)

Pixel (x, t) = p (x+ δ (t)) , (2)

ˆPixel (x, t) = p (x+ (1 + α) δ (t)) , (3)

where Pixel (x, t) represents the pixel’s brightness at time instance t; ˆPixel (x, t) denotes the pixel’s brightness

at time instance t after amplification; δ (t) indicates the displacement of target motion; and α stands for the

amplification factor. As illustrated in Figure. 2, compared to the original apex frame image, the intensity of

the micro-expression of the apex frame processed by EVM is significantly improved. Moreover, the enhanced

expression is very close in appearance to the macro-expression in the corresponding apex frame.195

In the last step, a complete video is restored from the enhanced frames using the original sampling fre-

quency. Apex frames corresponding to the micro-expression are finally selected for experimentation according

to the order of the apex frames in the micro-expression datasets. The apex frames are rescaled to a size that

fits the architecture of the feature extraction module. This module is described in detail in the following

section.200

3.3. Feature Extraction

Because the input data is processed sequentially (layer after layer) in standard convolutional networks, a

certain degree of feature loss inevitably occurs due to the different types of information encoded at each of

the network layers, e.g., lower network layers typically encode low–level image characteristics, whereas higher

layers encode higher–level image semantics. Additionally, significant variability in appearance, attributable205

to varying illumination, pose changes, and other nuisance factors, often presents a challenge for a model

to accurately identify and focus the location of crucial information during the feature extraction process.

Therefore, it is paramount that the feature extraction process is designed in a way that mitigates these

problems. Based on this insight, we propose a densely connected feature extractor with a mixed attention

mechanism in the following sections.210

3.3.1. Densely-Connected Module

To improve the efficiency of feature extraction and reduce the loss of features across the model layers,

the proposed feature-extractor adopts a backbone that consists of stacked densely connected modules. As

shown in Figure. 3, the output features of a given convolutional layer in the densely-connected module are

used as the feature input of all subsequent convolutional layers. This process facilitates feature reuse down215

the module’s layers and ensures that complementary features are learned in the additional channels of each

layer. Furthermore, as the features from the lower layers are propagated to all subsequent layers, all of the

encoded image information is still present at the final output layer. Thus, the adopted connection mode

exhibits better feature extraction characteristics than competing architectures and improves the design of
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Figure 3: High–level overview of the feature extraction module implemented with a densely connected feature extractor. The

proposed module allows for feature reuse in all layers and does not suffer from the loss of potentially important information

down the model layers.

standard (stacked-only) feed-forward layers. In this backbone, the appearance semantics (from the lower220

layers) are integrated with the abstract semantics (from the higher layer) through dense skip connections,

which facilitates the retention of useful information and provides comprehensive semantic information for

emotion classification. Additionally, with standard models, the feature (and information) loss becomes more

severe as the depth of the model increases, while the densely-connected design avoids this critical drawback.

In the densely connected module, a 5 × 5 kernel size is selected for the convolution layers, and a batch-

normalization operation is utilized after each convolutional layer to normalize the distribution of features,

reduce the internal covariate shift, and improve the convergence of the model during training. The result of

these operations is then fed as input to the next layer. In the connections between the layers, the module

exploits feature splicing, where the output features of the previous layer are directly spliced with the output

of the current layer. Such a connection mechanism reduces the loss of features in the transmission process,

minimizes the number of calculations needed, and reduces the number of model parameters. Additionally,

after feature extraction with the given densely-connected sequence of convolutional layers (also called a block),

the module down-samples and splices the generated feature maps using average pooling, thereby compressing

and reducing the feature dimension. The output of the ith convolution layer of the jth dense block can be

expressed as:

Hi
j = BN

(
σ1

(
Conv5×5

(
Concat

(
H0

j ,H
1
j ,H

2
j , . . . ,H

i−1
j

))))
, (4)

where BN(·) and σ1(·) respectively present the batch-normalization layer and ReLu activation function,225

Conv (·) is a composite function that denotes all operations in each convolutional layer, Concat (·) denotes

the concatenation operator on the channel dimension and H0
j is the input of the module.

3.3.2. Mixed Attention Module

Different facial expressions typically occur in different parts of the face and at varying degrees of inten-

sity, e.g., disgust is usually accompanied by frowning and a narrow mouth, and the corresponding (active)230

facial areas are the eyebrows and mouth. Steering the model to allocate finite computational resources to

critical facial areas not only augments the efficiency of the feature extraction process but also heightens the

concentration of the model on the objective task. In addition to spatial information, the channel informa-

tion of features also can assist in pinpointing the regions where the crucial facial information is. Thus, a
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mixed attention mechanism, focusing on spatial and channel of feature, is instrumental to precisely locating235

emotional regions.

Figure 4: Overview of the mixed attention mechanism implemented in the proposed model. The mechanism implements a

channel as well as a spatial attention step and ensures that the highly discriminative features are computed for the MER task

by the proposed feature extraction module.

For the above reasons, we propose a mixed attention module and integrate it in the skip pathway of the

densely connected module. The proposed attention module combines powerful channel-attention and spatial

attention steps, as illustrated in Figure. 4. The proposed channel-attention mechanism is implemented

with a multi-layer perceptron (MLP), which, given some input feature representation, generates a set of240

corresponding channel weights. The MLP is fed with two types of features, i.e., features extracted by either

max-pooling or average pooling operations applied over the output of the densely connected feature extractor.

This dual encoding (through the different pooling operations) allows for the extraction of the pooled features

with complementary information. The corresponding outputs (i.e., the channel weight from the two pooled

feature sets) are then aggregated through a summation operation and subjected to a sigmoid activation layer,245

where the judgment regarding “attention” or “no attention” is made. After that, the output from the skip

pathway of the densely connected module is multiplied channel-wise with the computed weights to give higher

attention to more relevant feature channels. In the next step, the channel-weighted features are passed to the

spatial-attention mechanism, where a max-pooling layer is used to identify the most informative spatial areas

of the feature channels, and an average pooling layer is adopted to capture the overall information within250

that area. Finally, a 5 × 5 convolutional layer with a sigmoid activation function is utilized to generate the

spatial attention weights for the input feature channels.
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The entire process, performed as part of the proposed mixed attention mechanism, is formally expressed

as follows:

Mc = σ2 (MLP (AvgPool (H)) +MLP (MaxPool (H)))

= σ2

(
ω1

(
ω0

(
Hc

avg

))
+ ω1 (ω0 (H

c
max))

)
,

(5)

ω0 ∈ R
C
r ×C , ω1 ∈ RC×C

r

where Mc are the channel attention weights for the input features, H denotes the feature from skip pathway

of the densely connected extractor, σ2(·) stands for the sigmoid activation function, MLP (·) represents the

multi-layer perceptron with the LeakReLU activation function, and r indicates a hyper-parameter corre-

sponding to the dimensionality reduction rate. The computed weights are used in the channel-attention

mechanism as follows:

H ′ = H ⊗Mc, (6)

where ⊗ denotes the Hadamard product, and H ′ represents the channel-weighted image features.

The spatial-attention mechanism is described as follows:

Ms = σ2

(
Conv5×5 ([AvgPool (H ′) ,MaxPool (H ′)])

)
= σ2

(
Conv5×5

(
(H ′)

s
avg , (H

′)
s
max

))
,

(7)

where Ms are the spatial attention weights for the (channel-weighted) input features, σ2(·) represents the

sigmoid activation function, and Conv5×5(·) denotes the convolution operation with the convolution kernel

of size 5× 5. The calculated spatial-attention weights are then applied as follows:

Ĥ = H ′ ⊗Ms, (8)

where (8) shows that the spatial attention weights are multiplied element-wise with channel-weighted input

features to obtain the final mixed-attention feature tensor Ĥ.255

3.4. Emotion Classification

After the feature extraction stage, the spatial dimensions of the attention-weighted features Ĥ are trans-

formed to a spatial resolution of 7× 7, flattened, and passed into a fully-connected layer. This layer captures

(long-range) dependencies between individual parts of the feature maps and facilitates the classification

process, and can be expressed as:

ŷ = σ3

(
ω · Ĥ + b

)
, (9)

where ŷ represents the probability distribution over the target classes, ω, and b denote the weight matrix and

bias of the fully connected layer, respectively, and σ3(·) stands for the Softmax activation function.

In order to train and optimize the whole model, a standard cross-entropy loss is selected, i.e.:

Loss (y, ŷ) = − 1

N

∑
k∈N

yk log ŷ, (10)

where N represents the number of samples, and y and ŷ stand for the true probability distribution and

predicted probability distribution of the kth sample, respectively.260
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4. Experimental Evaluation

In this section, we report experimental results that show in comparative experiments with several state-of-

the-art methods from the literature: (i) the performance of the proposed model in a compound setting with

a mixed dataset composed of three popular micro-expression datasets, (ii) the performance of the model on

each of the three datasets separately, (iii) comprehensive ablation experiments that demonstrate the impact265

of the proposed attention mechanism, (iv) the impact of the densely-connected feature extractor on the

overall MER performance, and (v) the (time and space) complexity of the model.

4.1. Experimental Datasets

Two types of datasets are used in the experiments, i.e., macro-expression datasets for model pretraining,

and micro-expression datasets for fine-tuning and testing.270

Table 1: Characteristics of the selected datasets

Dataset
Type Number Resolution

Frame rate
Dataset Samples Subjects Samples Emotions Samples Face

CK+ [47] In-lab Image 123 593 7 - - -

RAF-DB [48] In-the-wild Image - 29672 7 - - -

FER-2013 [49] In-the-wild Image - 35886 7 48× 48 - -

CASME II [52] In-lab Video, image 26 255 7 640× 480 280× 340 200fps

SAMM [53] In-lab Video, image 26 159 7 2040× 1080 400× 400 200fps

SMIC-HS [30] In-lab Video, image 16 164 7 640× 480 190× 230 100fps

4.1.1. Selection of the Datasets

Three popular macro-expression datasets were selected to estimate the initial parameters for the feature-

extraction model, i.e., the CK+ [47], the RAF-DB [48], and the FER-2013 dataset [49]. Details on these three

datasets are shown in Table 1. As can be seen, two of the selected datasets were captured in uncontrolled (also

called in-the-wild) settings and one was acquired in a laboratory environment. This composition of datasets275

was chosen to ensure the pretraining model performs well across a diverse set of acquisition conditions.

For a similar reason, we also select three micro-expression datasets, i.e., CASME II [52], SAMM [53], and

SMIC [30]. Detailed characteristics of these three datasets are also listed in Table 1.

Following prior work in this area, we address a three-class MER problem in this paper and partition the

samples in the macro- and micro-expression datasets into three categories, namely, negative, positive, and280

surprise. Because of this categorization, some of the facial expressions present in the datasets are excluded

from the experimentation. The final categorization (that also allows the mixing of the datasets during the

experiments) is shown in Table 2.
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Table 2: Organization of the datasets for the experiments

Dataset
Categorization

Excluded
Negative Positive Surprise

CK+ [47]

Anger,

Happiness Surprise -

Contempt

Disgus,

Fear

Sadness

RAF-DB [48]

Fear,

Happiness Surprise Neutral
Disgust

Sadness

Anger

FER-2013 [49]

Anger,

Happiness Surprise Neutral
Fear

Disgust

Sadness

CASME II [52]

Disgust,

Happiness Surprise

Others

Repression Fear

Anger

SAMM [53]

Anger,

Happiness Surprise Others
Fear

Disgust

Contempt

SMIC-HS [30] Negative Positive Surprise -

4.1.2. Processing of the Datasets

After the dataset partitioning, the micro-expression datasets are processed by the EVM algorithm.285

Through preliminary experiments, we found that the movement frequency of micro-expression changes very

slightly, and its movement is roughly in the frequency range of 0.1 − 0.4 Hz, so this range is targeted dur-

ing the magnification. To achieve a good trade-off between noise amplification the micro-expression-motion

amplification, we chose the amplification factor of 15 in the experiments. For each input video, the apex

frame(s) are extracted and the face region is cropped and rescaled to the fixed size of 112× 112 pixels by the290

functionality offered by OpenCV’s face recognition algorithm [54].

4.1.3. Pretraining

In the pretraining process, the source domain (macro-expression) datasets are given as input to the

model for training. The specific hyper-parameters used during this stage are shown in Table 3. During the
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Table 3: Hyper-parameter configuration for pretraining

Hyper-parameter Value

Batch size 16

# Epochs 200

Learning rate lr 0.01

lr reduction factor 0.1

Patience 20

pretraining process, 20% of the samples in the training set are used for validation. To ensure the generalization295

and effectiveness of the pretraining model, we maintain the balance of the sample size in the three categories

(negative, positive, and surprise), and the weights corresponding to the highest accuracy on the validation

set are considered the optimal weights computed during the pretraining. The accuracy on the validation set

reached 87.15% during the best pretraining run.

4.2. Implementation Details300

The model is implemented using the Keras deep learning framework. The pretraining and training of

the feature extraction model are conducted on a 64-bit UBUNTU16.04 system with an E5-2598V4 CPU,

and four NVIDIA TeslaV100 GPUs. Table 4 lists the detailed configuration for training (fine tuning) in

the target (micro-expression) domain. The Adam optimizer is used in the training process. To prevent

overfitting, an ’early stopping’ criterion is also implemented and training is interrupted if the performance on305

the validation set fails to improve for 20 consecutive epochs. To ensure good model convergence, the learning

rate is adaptively reduced as the training progresses.

Table 4: Hyper-parameters configuration for the final training

Hyper-parameter Value

Batch size 32

Epochs 200

Learning rate lr 0.01

lr reduction factor 0.1

Patience 20

4.3. Performance Measures

In accordance with the standard evaluation methodology [55], we use accuracy, unweighted F1score (UF1),

and unweighted average recall rate (UAR) as the performance indicators in our experiments. Accuracy (Acc)

is defined as the fraction of correctly classified samples with respect to the total number of samples. UF1

represents the average value of the F1score of each class, that is:

UF1 =

∑m
k=1 Fk

m
, (11)
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where m denotes the number of classes, and Fk is the F1score of the kth class. Fk is given by the harmonic

mean between precision (Pk) and recall (Rk) of the kth class, that is,

F1score = 2× Pk ×Rk

(Pk +Rk)
, (12)

Pk =
TPk

(TPk + FPk)
, Rk =

TPk

(TPk + FNk)
, (13)

where TPk, FPk, and FNk denote the number of true positives, false positives, and false negatives for the

kth class, respectively.310

Finally, UAR is given by:

UAR =

∑m
k=1 TPk

m
, (14)

where TPk and m denote the number of true positives for the kth class and the number of classes, respectively.

4.4. Experimental Setting

We define two benchmarks to evaluate the proposed method, i.e., the composite-dataset evaluation (CDE)

benchmark and the single-dataset evaluation (SDE) benchmark. In the CDE benchmark, we use samples

from all experimental datasets to fine-tune the proposed model for micro-expression recognition. The model,315

therefore, sees a diverse set of image characteristics during training and is expected to generalize better to

a wide variety of input samples. Different test datasets are then utilized with the CDE benchmark. The

SDE benchmark, on the other hand, corresponds to the traditional experimental setup used when evaluating

MER models. With this benchmark, the evaluated MER model is fine-tuned and tested on a single dataset at

the time. The reported performance, therefore, reflects the performance of the evaluated model in a specific320

scenario/setting and points to its generalization capabilities across different data characteristics.

We select the leave-one-subject-out (LOSO) evaluation protocol for all experiments regardless of the

benchmarking methodology used (CDE or SDE). The LOSO protocol represents the standard and most

widely used protocol in MER research, where each subject is excluded from the training procedure once, and

performance is then reported through aggregate statistics over all (unseen/excluded) subjects.325

4.5. Comparative Results

In this section, we report comparative results with state-of-the-art methods from the literature to demon-

strate the superiority of the proposed approach over its competitors. Additionally, we also analyze the main

causes of misclassification.

4.5.1. Experiments Under the CDE Benchmark330

Under the CDE benchmark, we compare our approach against the following state-of-the-art competitors:

LBP-TOP [8], Bi-WOOF [11], CapsuleNet [41], OFF-ApexNet [42], Dual-Inception [56], STSTNet [16],

EMR [27], RCN [17], ICE-GAN [57], and MERASTC [58]. Experimental results are reported for the three

micro-expression datasets separately (i.e., CASME II, SAMM, and SMIC-HS), but also for a combined dataset
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that includes samples from all three test datasets. We refer to this combined dataset as Mixed hereafter. All335

tested models are fine-tuned using data from the three experimental micro-expression datasets and tested

with the LOSO protocol.

(a) Mix dataset (b) CASME II dataset (c) SAMM dataset (d) SMIC-HS dataset

Figure 5: Confusion matrices generated by the proposed approach for the Mixed, CASME II, SAMM, and SMIC-HS datasets

under the CDE benchmark. Micro-expression recognition (MER) is conducted on a three-class problem, where samples are

classified into the positive, negative or surprise class. The figure is best viewed in color.

Experimental results on the Mixed dataset. We first discuss and analyze the experimental results

obtained on the mixed dataset. As shown by the confusion matrix in Figure. 5 (a), the classification of

negative expressions is the most accurate, followed by that of positive expressions, whereas the classification340

accuracy of surprise is the lowest. The main reason for this result is the uneven distribution of the number of

samples in the datasets. There are 252 samples in the negative category, 109 samples in the positive category,

and only 86 samples in the surprise category. This data distribution is also reflected in the recognition results

and introduces a preference in the model toward the more represented expression categories.

When comparing the proposed approach to the competing handcrafted feature-extraction methods and345

the more recent deep-learning techniques in Table 5, we see a clear advantage for our approach. In addition

to the convincing classification accuracy of 93.74%, the other two performance indices UF1 and UAR also

clearly point to the superiority of the proposed approach, i.e., UF1 = 0.9213 and UAR = 0.9167.

Compared with the competing deep-learning methods, our approach performs better in solving the MER

classification problem. The results for OFF-ApexNet [42] (which introduced the concept of apex frames350

and greatly simplified the MER recognition process) show that just using apex frames is insufficient for

MER, because compared to macro-expression, the expression intensity in the apex frames is still too weak

for micro-expressions. Therefore, the proposed method improves by 0.2017 and 0.2071 with respect to the

UF1 and UAR scores, respectively, over OFF-ApexNet. Furthermore, OFF-ApexNet, CapsuleNet [41], Dual-

Inception [56], STSTNet [16], and RCN [17] all adopt shallow networks to overcome the problem of small355

numbers of samples in the micro-expression datasets. However, shallow models are only able to extract

features with limited expressive power, leading to suboptimal performance. Conversely, if the model is too

deep and the number of samples in the micro-expression datasets is too small, the model easily overfits and

results in poor generalization ability. While the above-mentioned models suffer from such shortcomings, the

proposed approach overcomes these issues and shows clear improvements over the competitors.360
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Table 5: Performance comparison with the competing techniques on the Mixed dataset under the CDE benchmark.

Handcrafted methods UAR UF1 Acc (%)

Bi-WOOF [11] 0.6227 0.6296 -

LBP-TOP [8] 0.5785 0.5882 -

Deep learning methods UAR UF1 Acc (%)

CapsuleNet [41] 0.6506 0.6520 -

OFF-ApexNet [42] 0.7096 0.7196 -

Dual-Inception [56] 0.7278 0.7322 -

STSTNet [16] 0.7605 0.7353 -

EMR [27] 0.7824 0.7885 -

SA-AT [28] 0.5958 0.5936 -

RCN [17] 0.7165 0.7052 -

ICE-GAN [57] 0.8410 0.8450 -

MERASTC [58] 0.9160 0.9200 -

Ours 0.9167 0.9213 93.74

When looking at the results for the EMR [27] method that also uses EVM to increase the intensity of

facial expressions, but relies on ResNet features for data representation, we again see that our solution has a

clear edge. This edge is ensured by the densely connected module and our mixed attention mechanism, which

leads to highly discriminative features for MER and makes better use of the complete information contained

in the input data. As a result of the proposed design, our method improves by 0.1328 in terms of UF1 and365

by 0.1343 in terms of the UAR score on EMR.

In the SA-AT [28] approach, a ResNet backbone, and an attention mechanism are combined, and a

transfer learning method is adopted to fine-tune the model for MER. However, the performance of this

method is not ideal. Compared to our method, the correspondence between samples in the source and

target domain is insufficient, which leads to poor results during transfer learning. Another weak point is370

that the feature extraction model of SA-AT, ResNet, introduces more parameters than the densely connected

module designed in this paper, thus resulting in limited generalization capabilities across image characteristics.

Additionally, the standard sequential feed-forward model topology leads to a loss of potentially important

image information. Thus, in terms of experimental results, our method yields 0.3209 and 0.3277 higher

performance scores than SA-AT. ICE-GAN [57] uses a GAN network to generate new data to enrich the375

datasets, which is shown to be beneficial for performance, but the newly generated data needs an appropriate

feature extraction model to match it. MERASTC [58] extracts features around key facial points, which

greatly improves the generalization of the model. However, the traditional convolutional layer stack model is

chosen as the feature extraction model, which adversely affects its performance. As a result of these issues,

our method also outperforms these two approaches.380

The proposed method also compares favorably when compared with the traditional handcrafted feature-
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extraction techniques [8, 11]. The reason for this outcome is that handcrafted features are not specialized

enough for the extraction of representative facial features for MER. These features are too sensitive with

respect to environmental factors and are, hence, not suitable for images captured in complex environments. In

contrast, the features extracted by our method are more targeted and have better robustness to environmental385

factors. Therefore, the two performance indicators, UF1 and UAR, for our method are 0.2917 and 0.2940

higher than for the traditional method with the best performance, respectively.

Experimental results on the CASME II, SAMM, and SMIC-HS datasets. To better analyze

the performance of our model, experiments are also carried out on the CASME II, SAMM, and SMIC-HS

datasets separately. Figures. 5 (b), (c), and (d) show the confusion matrices obtained from the experiments390

on these datasets. It can be seen that the proposed method has good classification performance on the

CASME II and SMIC-HS datasets, but due to the unbalanced distribution of data samples across the classes

in these datasets, the classification accuracy for surprise is not as good as for negative and positive expres-

sions. The classification accuracy on the CASME II and SMIC datasets is higher than the classification

accuracy on the SAMM dataset. Considering the confusion matrix on this latter dataset, it appears that395

most misclassifications occur between positive expressions and surprise. There are two reasons for this result.

The first one is that in the SAMM dataset, the number of surprise samples is only 30, which is far less

than the number of positive and negative samples. The second reason is that all the samples in the SAMM

dataset are black-and-white images, while all the samples in the CASME II and SMIC-HS datasets are color

images. The mixed attention module in our feature extraction model is more sensitive to the channel features400

and spatial features of color images. Therefore, the final classification performance on the CASME II and

SMIC-HS datasets is significantly better than that observed for the SAMM dataset.

Next, we compare our method with the baselines that were also considered in the previous section. The

detailed results of the comparison are shown in Table 6. For the CASME II dataset, both the handcrafted

feature methods and deep learning methods have relatively good performance. The reason is that the frame405

rate of the CASME II dataset is higher, and the resolution of each frame image is also higher than with

the other two datasets. Therefore, the recognition performance on this dataset is relatively high for all

tested techniques. Nonetheless, our method improves the performance of the competing methods to a certain

degree and results in the final accuracy of 94.67%. On the SAMM dataset, compared to the traditional

methods exploiting handcrafted features, our method is 0.3285 and 0.3274 higher in terms of the considered410

performance indices. We ascribe this result to the fact that traditional handcrafted features do not have

strong adaptability to complex environmental changes. With our method, on the other hand, different

scenes and different types of images are used during pretraining, which enables the model to have strong

adaptability to the micro-expression features in this dataset. Our method is also superior to most previous

deep learning methods in terms of performance indicators on this dataset. However, two methods (ICE-415

GAN and MERASTC) perform slightly better than our method, because the images extracted in the SAMM

dataset are black and white, which makes the channel features of the images lack significance. For the
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Table 6: Performance comparison with competing methods on the CASME II, SAMM, SMIC-HS datasets under the CDE

benchmark.

Handcrafted Method
CASME II SAMM SMIC-HS

UAR UF1 Acc (%) UAR UF1 Acc (%) UAR UF1 Acc (%)

Bi-WOOF [11] 0.8026 0.7805 - 0.5139 0.5211 - 0.5829 0.5727 -

LBP-TOP [8] 0.7429 0.7026 - 0.4102 0.3954 - 0.5280 0.2000 -

Deep learning method UAR UF1 Acc (%) UAR UF1 Acc (%) UAR UF1 Acc (%)

CapsuleNet [41] 0.7018 0.7068 - 0.5989 0.6209 - 0.5877 0.5820 -

OFF-ApexNet [42] 0.8681 0.8764 - 0.5392 0.5409 - 0.6695 0.6817 -

Dual-Inception [56] 0.8560 0.8621 - 0.5663 0.5868 - 0.6726 0.6645 -

STSTNet [16] 0.8686 0.8382 - 0.6810 0.6588 - 0.7013 0.6801 -

EMR [27] 0.8209 0.8293 - 0.7152 0.7754 - 0.7530 0.7461 -

SA-AT [28] 0.7552 0.7607 - 0.4868 0.4476 - 0.5463 0.5512 -

RCN [17] 0.8563 0.8087 - 0.6976 0.6771 - 0.5991 0.5981 -

ICE-GAN [57] 0.8680 0.8760 - 0.8230 0.8550 - 0.7910 0.7900 -

MERASTC [58] 0.9500 0.9330 - 0.8460 0.8300 - 0.8620 0.7900 -

Ours 0.9174 0.9340 94.67 0.8415 0.8485 90.15 0.9512 0.9510 95.76

SMIC-HS dataset, our proposed method significantly outperforms all previously proposed methods. On this

dataset, the performance of the competing methods is always the worst across all three datasets. However, the

proposed feature extraction model can extract highly informative features for MER and results in the overall420

accuracy of 95.76% on the SMIC-HS, improving significantly on the runner-up, the MERASTC approach.

Overall, the presented results clearly show that our model clearly shows a better generalization ability and

stronger robustness to the environmental factors than the competing approaches.

The Student’s t-test results under the CDE benchmark. Given that statistical characteristics

reflect the robustness of the model, we have substantiated the robustness of the proposed model using the Stu-425

dent’s t-test under the CDE benchmark. The p-values were instrumental in gauging the robustness disparity

between our method and existing methods. In terms of the UAR metric, the p-values of our method when jux-

taposed with those of Bi-WOOF [11], LBP-TOP [8], CapsuleNet [41], OFF-ApexNet [42], Dual-Inception [56],

STSTNet [16], EMR [27], SA-AT [28], RCN [17], ICE-GAN [57], and MERASTC [58] are 0.0079, 0.0052,

0.0017, 0.017, 0.0145, 0.0166, 0.0037, 0.0047, 0.0269, 0.0439, and 0.3255, respectively. For the UF1 metric,430

the p-values corresponding to our method and the above methods are 0.0047, 0.0147, 0.0019, 0.0160, 0.0123,

0.0070, 0.0098, 0.0045, 0.0108, 0.0638, and 0.1627, respectively. Notably, aside from MERASTC for UAR

and UF1 and ICE-GAN for UF1, all other methods show p-values less than 0.05 when compared to our pro-

posed method, indicating a stronger robustness of our approach. Although MERASTC exhibits the closest

robustness to our method, our approach is significantly more straightforward to implement.435
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4.5.2. Experiments under the SDE benchmark

Under the SDE benchmark, we compare our method against the following competing techniques: LBP-

TOP + AdaBoost [59], STCLQP [9], FDM [60], LBP-TOP [61], AlexNet [62], ELRCN [63], SSSN [64],

DSSN [64], and TSCNN [45]. We analyze the experimental results separately for each of the three datasets

(CASEM II, SAMM, and SMIC-HS datasets). For each experiment, a single dataset is used for fine-tuning440

and testing using the LOSO protocol.

(a) CASME II dataset (b) SAMM dataset (c) SMIC-HS dataset

Figure 6: Confusion matrices generated by the proposed approach for the CASME II, SAMM, and SMIC-HS datasets under

the SDE benchmark. Micro-expression recognition (MER) on the CASME II and SAMM datasets is for the five-class problem,

whereas MER on the SMIC-HS dataset is for the three-class problem. The figure is best viewed in color.

Experimental results on the CASME II dataset. We consider a 5-class recognition problem on

the CASME II dataset to facilitate comparison with prior work, where the target emotional categories are

disgust, happiness, repression, surprise, and other. As shown in Figure 6 (a), the other category has the

highest recognition accuracy, with an accuracy of 92%. Repression, on the other hand, exhibits the lowest445

performance with a recognition accuracy of only 74%. There are two main reasons for this situation, one being

that the other class has the largest number of samples (99), whereas repression has the smallest number of

samples (27). Secondly, it can be observed that 15% of the samples in the repression category are misclassified

as other, indicating that the samples in the repression category have similar emotional expressions as some

of the samples labeled as other.450

Table 7 illustrates the performance of the proposed method compared to the selected state-of-the-art

MER methods. As can be seen from the results, the performance of the proposed method is significantly

stronger than that of the competing methods. The best-performing MER method based on handcrafted

features is STCLQP, with UF1 and Acc reaching values of 0.5836 and 58.39%, respectively. Among the

deep learning methods (AlexNet, ELRCN, SSSN, DSSN, TSCNN), TSCNN yields the best performance.455

The method is a three-stream MER approach that considers the global apex frame image, the optical flow

map, and the local apex frame image for the recognition process. Because the model uses information-rich

representations of the facial emotions it has excellent recognition performance. Compared to the best-

performing handcrafted method STCLQP, TSCNN achieves a 0.2634 higher UF1 score and a 27.96% higher

Acc score. Our method uses a transfer-learning strategy to overcome the problem of limited sample size, while460
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Table 7: Performance comparison with the existing work on CASME II dataset under SDE benchmark.

Handcrafted methods UF1 Acc (%)

LBP-TOP + AdaBoost [59] 0.3337 43.78

STCLQP [9] 0.5836 58.39

FDM [60] 0.4700 41.96

LBP-TOP [61] 0.4700 51.00

Deep learning methods UF1 Acc (%)

AlexNet [62] 0.6675 62.96

ELRCN [63] 0.5000 52.44

SSSN [64] 0.7151 71.19

DSSN [64] 0.7297 70.78

TSCNN [45] 0.8070 80.97

Ours 0.8408 86.35

the recognition performance is also improved with the help of macro-expressions pretraining. Furthermore,

the densely connected structure and the mixed attention mechanism lead to highly discriminative features,

which in turn enable the proposed method to clearly outperform the state-of-the-art in terms of recognition

performance, with 86.35% on Acc and 0.8408 on UF1.

Experimental results on the SAMM dataset. Similar to the experiments on the CASME II dataset,465

a five-class recognition task is considered on the SAMM dataset to enable comparison with existing methods.

The emotions included in the SAMM dataset are anger, contempt, happiness, surprise, and other. From the

confusion matrix presented in Figure 6 (b), it can be found that the lowest recognition accuracy of 67% is

achieved for the samples of the contempt class. It is interesting to note that 17% of the contempt samples

were misclassified as belonging to happiness. Since both contempt and happiness are accompanied by a rise470

in the corners of the mouth, the two emotions are very easily confused in MER. Moreover, happiness contains

approximately twice as many samples as contempt, which is another reason for the misclassification.

Unlike the CASME II dataset, the SAMM dataset contains samples of grey-scale images, and the reduction

of channel information in the samples increases the difficulty of MER. Therefore, both the handcrafted MER

methods and the deep learning MER methods have decreased performance on the SAMM dataset. From475

Table 8, the worst performance of these state-of-the-art methods is seen with LBP-TOP, while the best

performance is observed with TSCNN, where TSCNN outperforms LBP-TOP by 49.88% and 0.5286 in terms

of Acc and UF1 scores, respectively. Although the recognition performance of our method on the SAMM

dataset is degraded compared to the experimental results on the CASME II dataset, our approach still

outperforms all of the tested state-of-the-art MER methods by a considerable margin.480

Experimental results on the SMIC-HS dataset. Different from the CASME II and SAMM datasets,

the experiments on the SMIC-HS dataset are conducted for a three-class task, where emotions include nega-

tive, positive, and surprise. Figure 6 (c) illustrates the confusion matrix corresponding to the experimental
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Table 8: Performance comparison with the existing work on the SAMM dataset under the SDE benchmark.

Handcrafted methods UF1 Acc (%)

LBP-TOP [8] 0.2892 34.56

LBP-SIP [31] 0.3133 36.03

HOG-TOP [32] 0.3403 36.06

HIGO-TOP [32] 0.3920 41.18

Deep learning methods UF1 Acc (%)

AlexNet [62] 0.4260 52.94

SSSN [64] 0.4513 56.62

DSSN [64] 0.4644 57.35

TSCNN [45] 0.6942 71.76

Ours 0.8178 84.44

results of the proposed method on the SMIC-HS dataset. The samples in the negative category are all

correctly classified, but there are still a small number of misclassifications that occur between positive and485

surprise. This is because there is a certain similarity in the way these two emotions are expressed.

Table 9: Performance comparison with the existing work on the SMIC-HS dataset under the SDE benchmark.

Handcrafted methods UF1 Acc (%)

LBP-TOP + AdaBoost [59] 0.4731 44.34

STCLQP [9] 0.6381 64.02

FDM [60] 0.5380 54.88

Bi-WOOF + Phase [65] 0.6730 68.29

Deep learning methods UF1 Acc (%)

AlexNet [62] 0.6013 59.76

GoogleNet [66] 0.5511 51.23

OFF-ApexNet [42] 0.6709 67.68

SSSN [64] 0.6329 63.41

DSSN [64] 0.6462 63.41

TSCNN [45] 0.7236 72.74

Ours 0.9139 92.73

As shown in Table 9, Bi-WOOF+Phase resulted in UF1 and Acc scores of 0.6730 and 68.29%, respectively,

which is the highest among the handcrafted MER methods. Furthermore, Bi-WOOF+Phase also performed

better than some of the deep learning methods (e.g., AlexNet, GoogleNet, OFF-ApexNet, SSSN, and DSSN).

Among all of the state-of-the-art methods considered, TSCNN showed the best performance. However, the490

method proposed in this paper significantly outperforms TSCNN both in terms of UF1 as well as Acc scores.

Specifically, our approach yields an UF1 score that is 0.1903 higher than that of TSCNN and an Acc score
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Table 10: Results of the ablation experiment under the CDE benchmark.

Method
Mixed CASME II SAMM SMIC-HS

UAR UF1 Acc (%) UAR UF1 Acc (%) UAR UF1 Acc (%) UAR UF1 Acc (%)

Ours 0.9167 0.9213 93.74 0.9174 0.9340 94.67 0.8415 0.8485 90.15 0.9512 0.9510 95.76

w/o Attention 0.8557 0.8691 89.26 0.8653 0.8887 91.33 0.6477 0.6890 82.58 0.9265 0.9215 92.73

(a) Mixed dataset (b) CASME II dataset (c) SAMM dataset (d) SMIC-HS dataset

Figure 7: Confusion matrices of the ablation experiment on different datasets under the CDE benchmark. The matrices show

the performance of the proposed approach implemented without the mixed attention module. The reference results with the

attention mechanism are shown in Figure. 5. The figure is best viewed in color.

that is 19.99% higher, which clearly speaks of the capabilities of our approach on the SMIC-HS dataset.

4.6. Ablation Study

One of the key components of the model proposed in this paper is the mixed attention mechanism that495

combines spatial attention and channel attention to facilitate the extraction of descriptive image features.

To demonstrate the impact of the proposed mixed attention mechanism, we design a comprehensive two-

stage ablation study. In the first stage, we remove the entire attention mechanism from our model and

observe results, whereas in the second stage, we ablate each of the steps of the proposed mechanism and

analyze its impact on the overall MER performance. Additionally, we also report qualitative/visual results.500

All experiments of the ablation study are conducted in accordance with the CDE benchmark and LOSO

experimental protocol.

Mixed Attention Ablation. The results of the first-stage ablation experiments are presented in Table 10

and Figure. 7. Note that the confusion matrices in Figure. 7 only report results for the proposed model without

the attention mechanism, while the results for the complete model are given in Figure. 5 As can be seen from505

the presented results, in case the mixed attention module is absent, the accuracy on the mixed dataset clearly

decreases. The performance of the model with the mixed attention module is 4.48%, 0.522, and 0.61 higher,

with respect to the Acc, UF1, and the UAR score on this dataset, respectively. This shows that under the

compound conditions, the attention mechanism makes the feature extraction model more targeted towards

discriminative image features and results in significant performance improvements compared to the setting510

where no attention is used.

It can also be observed from Figures. 7 (b), (c), and (d) that misclassified samples stem mainly from the
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SAMM and the SMIC-HS datasets. On the SAMM dataset, most surprise expressions are misclassified as

negative, indicating that the mixed attention module does indirectly enhance the characteristics of key areas

and improves the accuracy of MER on the SAMM dataset. On the SMIC-HS dataset, misclassifications mainly515

occur between surprise and positive. Some samples whose emotional polarity is positive are misclassified as

surprise. This is because the two emotional polarities have certain similarities in expression state. On the

CASME II dataset, the attention also results in significant performance improvements as on the other two

datasets. Overall, the reported results suggest that the proposed mixed attention module is indispensable

for efficient feature extraction with the proposed model.520

Fine–Grained Ablations. To further explore the effectiveness of the mixed attention mechanism, we

perform a fine-grained ablation study and explore the impact of the individual components of the proposed

mechanism on MER performance. Specifically, we consider four settings, i.e., no attention, only channel

attention, only spatial attention, and mixed attention. The results of this experiment are presented in

Table 11 and in the form of Grad-CAM [67] visualizations in Figure. 8.525

As can be seen, the feature extraction model without the attention mechanism focuses on a broad spatial

area within the facial images. Due to the insufficient sensitivity to the local information of the face, the

performance of the model is not ideal.

Figure 8: Illustration of the impact of the attention mechanism in terms of Grad-CAM visualizations. The heat maps are

presented for four different model configurations, i.e., without the attention mechanism, using only the channel part of the

attention mechanism, using only the spatial part of the attention mechanism, and using the complete mixed attention mechanism.

The examples show that the mixed attention mechanism yields superior performance.

Moreover, when only the spatial attention mechanism or the channel attention mechanism is used, the

ability of the model to focus on local image information is significantly improved. Since the channel attention530

mechanism and the spatial attention mechanism capture the local information from two different dimensions

of the feature image, there are differences in the selection of local regions. The mixed attention mechanism

combines the characteristics of the two individual attention mechanisms.
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Table 11: Comparison of attention mechanisms under the CDE benchmark.

Method
Mixed CASME II SAMM SMIC-HS

UAR UF1 Acc (%) UAR UF1 Acc (%) UAR UF1 Acc (%) UAR UF1 Acc (%)

No attention 0.8557 0.8691 89.26 0.8653 0.8887 91.33 0.6477 0.6890 82.58 0.9265 0.9215 92.73

Channel attention only 0.8892 0.8928 91.28 0.8952 0.8957 91.33 0.7874 0.7931 88.64 0.9245 0.9256 93.33

Spatial attention only 0.8766 0.8942 91.05 0.9108 0.9121 92.67 0.6644 0.7164 84.09 0.9428 0.9485 95.15

Mixed attention (proposed) 0.9167 0.9213 93.74 0.9174 0.9340 94.67 0.8415 0.8485 90.15 0.9512 0.9510 95.76

Table 12: Comparison of the densely-connected and residual feature extractors under the CDE benchmark.

Method
Mixed CASME II SAMM SMIC-HS

UAR UF1 Acc (%) UAR UF1 Acc (%) UAR UF1 Acc (%) UAR UF1 Acc (%)

Residual 0.7846 0.7954 84.56 0.8163 0.8317 86.67 0.6507 0.6426 83.33 0.8102 0.8113 83.64

Densely connected (proposed) 0.9167 0.9213 93.74 0.9174 0.9340 94.67 0.8415 0.8485 90.15 0.9512 0.9510 95.76

The attention to the effective area is not only further improved, but can also help to focus the feature

extraction process on the most important sources of information. This process is illustrated with the heat535

maps in Figure. 8. Meanwhile, the distribution of the attention heatmap can also well demonstrate the sparse

emotional distribution of micro-expressions.

4.7. Impact of Feature Extractor Design

The feature extraction stage of the proposed MER approach is based on a densely connected module.

With the help of the densely connected structure, the feature loss is effectively controlled, and the integrity540

of the output feature is guaranteed. To demonstrate the impact of the densely connected structure on MER

performance, we replace the densely-connected blocks with residual blocks and then conduct comparative

experiments under the CDE benchmark on the mixed dataset and with the proposed attention mechanism.

As shown in Table 12, the densely-connected structure performs better than the residual structure. The

reason for this result can be ascribed to the fact that the output features of each layer of the densely connected545

blocks are used as the input feature of the subsequent feature extraction layers during the feature extraction

process. This structural characteristic significantly reduces the loss of discriminative information along the

network. The extracted features, thus, represent a powerful representation of the MER task. Moreover, the

feature extraction model designed in this paper is observed to guarantee the integrity of the features and

ensures that locally relevant information is used by combining the densely connected structure and the mixed550

attention mechanism.

4.8. Computational Cost

The time complexity of the model and the number of parameters are listed in Table 13. As can be seen,

the model has a relatively low number of parameters compared to the standard deep learning model used in

the (visual) recognition literature.555
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Table 13: FLOPs and number of parameters of our method

Method Input size FLOPs (×106) Param (M)

Ours 112×112 6.26 3.115

5. Conclusion

At present, the existing methods for micro-expression recognition using video apex frames have no obvious

pertinence to the image. However, in the method proposed in this paper, the preprocessing part converts the

micro-expression features into an image form. Furthermore, a composite feature extraction model combining

a densely-connected feature-extraction module and a mixed attention module is built according to the char-560

acteristics of the image. In the feature extraction process, the densely-connected feature-extraction module

is used to reduce the loss of image features during processing. At the same time, the mixed attention module

is used to process the channel characteristics and spatial characteristics of the image, which greatly improves

the performance of single-frame micro-expression recognition. In addition, in the experimental part, the

effectiveness of the model is demonstrated through experiments on multiple datasets, and the results show565

that the model has strong robustness in compound scenarios.

Future endeavors in micro-expression recognition must continue to address the challenges posed by the

subtle and short duration of micro-expressions within video or image samples. Insights gleaned from transfer

learning suggest that amplifying the motion intensity of micro-expressions themselves is not the only possible

approach. Leveraging the prominence of macro-expressions to guide the extraction of micro-expression fea-570

tures can also enhance the precision of micro-expression recognition models. Moreover, given the restricted

size of micro-expression datasets, there is a pressing need for models that can extract more comprehensive

semantic cues from a limited amount of data and have a superior perception of facial emotion. Consequently,

models that can allocate computational resources with greater accuracy are poised to demonstrate better

performance in micro-expression recognition.575
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