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Abstract

Explainable artificial intelligence (XAI) aims to ensure
an AI system’s decisions are transparent and understand-
able by humans, which is particularly important in poten-
tially sensitive application scenarios in surveillance, secu-
rity and law enforcement. In these and related areas, under-
standing the internal mechanisms governing the decision-
making process of AI-based systems can increase trust and
consequently user acceptance. While various methods have
been developed to provide insights into the behavior of AI-
based models, solutions capable of explaining different as-
pects of the models using Natural Language are still limited
in the literature. In this paper, we therefore propose a novel
approach for interpreting the information content encoded
in face templates, produced by state-of-the-art (SOTA) face
recognition models. Specifically, we utilize the Text Encoder
from the Contrastive Language-Image Pretraining (CLIP)
model and generate natural language descriptions of var-
ious face attributes present in the face templates. We im-
plement two versions of our approach, with the off-the-
shelf CLIP text-encoder and a fine-tuned version using the
VGGFace2 and MAADFace datasets. Our experimental re-
sults indicate that the fine-tuned text encoder under the con-
trastive training paradigm increases the attribute-based ex-
plainability of face recognition templates, while both mod-
els provide valuable human-understandable insights into
modern face recognition models.

1. Introduction

In the rapidly advancing field of Artificial Intelligence
(AI), much of the focus has been on building deeper and
more accurate models. However, this often leads to in-
creased complexity, reducing their transparency. In sensi-
tive real-world scenarios, AI models often process personal
data in opaque and non-transparent ways, raising account-
ability concerns. Transparency and understanding of the in-
ternal mechanisms of such models are therefore crucial to
address these issues. Regulations like the GDPR and the

Male. Young. 
Middle-Aged. 

Senior...

Image embeddings

Male

Brown 
Eyes

Young

Text embeddings

Male
Young
Middle 
Aged

Senior
Asian
White
Black
Rosy 

Cheeks
Shiny Skin

Bald
Wavy Hair

...
CLIP Text 
Encoder

Image EncoderImage

Caption

Cosine 
Similarities

Figure 1. Overview of the proposed CLIP-SMU (CLIP-based
Symbolic Face Recognition Model Understanding) approach.
CLIP-SMU aims to interpret the information encoded in face tem-
plartes using natural language descriptions. Given a face image
I and a text description T we obtain the Image (Iemb) and Text
(Temb) Embeddings using Image and Text Encoders respectively.
The Iemb are then compared to each of the Temb and a cosine
similarity score is generated for every attribute. Scores with high
values indicate that certain attributes are encoded in the generated
face templates (in green), while low scores represent attributes that
are not encoded in the extracted face templates (in red).

AI Act emphasize the need for such clarity to ensure com-
pliance and trust [8, 31]. Explainable Artificial Intelligence
(XAI) aims to offer a solution to these issues by design-
ing mechanisms capable of explaining AI-based decision-
making processes and, consequently, ensuring that such de-
cisions are transparent and understandable.

The importance of XAI is especially evident in the field
of face recognition. Face recognition systems are widely
used in a variety of applications, including surveillance, se-
curity, law enforcement, and personal device authentica-
tion. To be reliable and trustworthy, these systems must
achieve high levels of accuracy. However, in order to fur-
ther improve trust and comply with privacy laws and reg-
ulations their reasoning also needs to be interpretable and
well-understood. Face recognition systems commonly rep-
resent facial images as high-dimensional feature vectors
(face templates hereafter), in which compressed informa-
tion about the appearance of the face is typically encoded.
This includes identity information, but also cues about var-
ious facial attributes. Since different models produce face



templates with varying amounts of facial-attribute informa-
tion, understanding what and how is encoded in the tem-
plates may provide insight into the internal workings of the
models and consequently their decision-making process.

While many existing XAI techniques focus on local or
visual explanations of face recognition systems [13,22,25],
solutions capable of explaining the information encoded in
face templates using Natural Language have received lim-
ited attention in the literature. To address this gap, we
present in this paper CLIP-SMU, a CLIP-based Symbolic
Face Recognition Model Understanding approach, as illus-
trated in Figure 1. The main idea behind CLIP-SMU is to
describe the information content encoded in the extracted
face templates using symbolic representations, such as lan-
guage descriptions (or binary attribute labels). To facilitate
this approach, we experiment with various face-image en-
coders (i.e., face recognition and face analysis models, such
as AdaFace [11] and SwinFace [20]) and align the com-
puted templates with a set of predefined text-description
processed through CLIP’s text encoder. By reasoning over
the joint image-text embedding space, we are able to iden-
tify attribute information present in the generated face tem-
plates and describe it using natural language. Through this
approach, CLIP-SMU effectively translates a complex face
templates into human-understandable form, making the in-
ternal mechanisms of modern face recognition models more
transparent also to non-experts in this field.

In this paper, we make the following contributions:

• We introduce CLIP-SMU, a novel approach for interpret-
ing the information content encoded in face templates
using natural language. The proposed approach explores
similarities in a joint image-text embedding space to pro-
duce human-understandable textual descriptions of the in-
formation encoded in the face templates.

• We explore two distinct implementations of CLIP-SMU,
where the first uses CLIP’s off-the-shelf text encoder,
whereas the second relies on a fine-tuned text encoder
adapted to the particular task of interpreting face tem-
plates from SOTA face recognition models, i.e., AdaFace
and SwinFace. The fine-tuned encoders will be made pub-
licly available after review as another contribution.

• We investigate how different face recognition models in-
fluence the encoded information within face templates,
offering valuable insights into their behavior. Further-
more, we demonstrate that the proposed CLIP-SMU
framework generates human-understandable interpreta-
tions of face templates, making the insights accessible
and meaningful even to non-experts.

2. Related work
Explainable AI. In standard ”black-box” models, partic-
ularly deep learning systems, the internal processes that

lead to a decision or prediction tend to be difficult to in-
terpret. Explainable AI (XAI) addresses this issue by mak-
ing decision-making transparent, understandable, and jus-
tifiable allowing human users to understand and interpret
the decisions made by AI models. A considerable number
of techniques have been developed to advance the field of
XAI, as detailed in [2] and [1], which provide extensive sur-
veys on this field. Methods like Local Interpretable Model-
agnostic Explanations (LIME) by Ribeiro et al. [24] and
SHapley Additive exPlanations (SHAP) by Lundberg and
Lee [14] offer model-agnostic approaches to interpret the
predictions of complex models. LIME builds a local in-
terpretable model around the classifiers’ predictions, while
SHAP explains how each feature contributes to the final out-
put by assigning an importance score to each prediction.

In addition to model-agnostic techniques, post-hoc ex-
plainability methods were designed specifically for image-
based models. These methods aim to visually highlight
the parts of the input, such as regions of an image, that
were most influential in the model’s decision. Some of these
methods include visualizing saliency maps as proposed by
Simonyan et al. [26], Gradient-based methods [23, 27, 28]
or CAM-based methods [6,9,10,25] as explained by Zhang
et al., which proposed the Opti-CAM method [33].

Explainable Face Recognition (XFR) is a branch of XAI,
which focuses on explaining and interpreting Face Recog-
nition systems. Philips et al. [19] define four principles
of XAI for biometrics and face recognition: Explainabil-
ity, Interpretability, Explanation Accuracy and Knowledge
Limits. They differentiate the terms Explainable and Inter-
pretable in such a way that an Explainable system does not
necessarily mean that it is interpretable. The system is ex-
plainable if it provides support and reasoning for each de-
cision, which does not need to be correct. However, for a
system to be interpretable it is required for the user to un-
derstand the explanations provided by the system.

Yin et al. [32] proposed one of the first approaches to-
wards interpretable face recognition. They introduced two
loss functions, i.e. Feature Activation Diversity (FAD) loss
and Spatial Activation Diversity (SAD) loss. FAD enhances
the robustness against occlusions, while SAD focuses on in-
cluding semantic information during training. Williford et
al. [30] proposed a face recognition system that uses triplets
and an inpainting game to emphasize regions that distin-
guish between positive and negative matches.

Mechanistic interpretability is another subfield of XAI
that tries to understand how the behavior of the neural net-
work is affected by its individual components. In contrast to
high-level interpretability approaches, which focus on ab-
stract explanations or input-output relationships, mechanis-
tic interpretability focuses on the model’s internal workings
in order to explain how it processes information step by
step. Most of the mechanistic interpretability research has
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Figure 2. Overview of the CLIP-SMU model for face template interpretation. CLIP-SMU uses an image encoder to project the input
face image into a face template space, where comparison with textual descriptions, processed through a suitably trained text-encoder are
possible. Given a set of pre-defined text descriptions (possibly in the form binary attributes), CLIP-SMU then generates a ranked list of the
most likely attributes encoded in the generated template. These attributes are hence naturally expressed as natural language descriptions.

focused on language models, leaving the vision domain rel-
atively understudied [3, 7, 18]. For example, more recently
Burns et al. [4] proposed an unsupervised method called
Contrast-Consistent Search (CCS) for finding latent knowl-
edge inside language models by answering ”Yes” and ”No”
questions and mapping the representations of both answers
to probabilities of being true.

Some of the research done in the vision domain includes
the work of Zimmermann et al. [35], in which the authors
investigated the mechanistic interpretability of nine SOTA
deep learning models. They designed a psychophysics ex-
periment to test how scaling of the models influences their
mechanistic interpretability. Interestingly, they found no
scaling effect for interpretability for any of the tested mod-
els. Moreover, a resent study by Palit et al. [18] imple-
mented the causal mediation analysis (CMA) mechanistic
interpretability method, originally developed for language
models, for the language-image model BLIP [12].

Our Contribution. While many of the existing methods
outlined above focus on local or visual explanations and can
also be applied to face recognition models, our CLIP-SMU
approach aims to interpret face templates using symbolic
representations. Specifically, we attempt to leverage the in-
formation about facial attributes encoded in extracted face
templates by using natural language descriptions and binary
labels of facial attributes. While there have been previous
attempts at generating natural language explanations for vi-
sual data [15, 17], they have, to the best of our knowledge,
not been focused on the particularities of face recognition
models, which is a unique aspect of CLIP-SMU [16].

3. Methodology

In this section, we present our CLIP-SMU approach to
interpreting face templates using natural language descrip-
tion. The approach, illustrated in Figure 2, consists of the
following two steps:

1. Extracting face templates. In this initial step, we uti-
lize various face recognition models based on different
model architectures and trained with different learn-
ing objectives to process facial images and extract face
templates. Specifically, we implement two state-of-
the-art face recognition and face analysis models, i.e.,
AdaFace [11] and SwinFace [20].

2. Interpreting the extracted face templates. After ex-
tracting the face templates, the next step is to decode
and understand the information they contain. CLIP-
SMU first analyzes these templates to identify the pres-
ence of encoded facial attributes and then generates
natural language descriptions, which we associate with
the extracted face templates by utilizing the language-
image model CLIP [21]. To validate the results gen-
erated by CLIP-SMU, we train binary classifiers and
identify the presence of absence of a specific attribute
within the generated template.

This approach allows us to make the results of face recog-
nition models more transparent and interpretable by pre-
senting the information content of the face templates in a
human-understandable form, which is easy to comprehend
by non-experts. To achieve this goal, we develop two CLIP-
SMU versions, which are presented in the following section.

3.1. CLIP-SMU for Face Template Interpretation

We consider two settings, when experimenting with the
CLIP-SMU approach in Section 5. In the first setting, we
employ CLIP’s image encoder together with its text en-
coder to evaluate how well CLIP’s off-the-shelf image en-
coder can extract meaningful face templates and represent
facial data within a semantic space. This approach helps us
to evaluate CLIP’s capability to map visual face features to
natural language descriptions. In the second setting, we re-
place CLIP’s image encoder with the state-of-the-art face
recognition and face analysis models AdaFace and Swin-



Face, which were specifically trained on face images. We
adopt these models as backbones for feature (template) ex-
traction, which we then try to interpret via natural language
using CLIP’s text encoder. These two backbones are specif-
ically selected, to allow us to study the differences in the
convolutional and transformer-based architectures and their
impact on the encoded information content.

In this second setting, we also fine-tune the different
variants of the CLIP model, but instead of adapting the en-
tire network’s weights, we only focus on fine-tuning the text
encoder. The image encoders (AdaFace and SwinFace) are
kept frozen, which allows us to leverage their pre-trained
ability to extract face templates.

Zero-shot CLIP-SMU. For the Zero-shot CLIP-SMU ap-
proach, we use the pretrained CLIP model in a zero-shot
fashion by connecting the face images’ embeddings with
the text embeddings of the manually generated captions
for the annotated attributes of each image. Specifically,
we measure the similarity between a set of predefined text
descriptions (captions) encoded with CLIP’s text encoder
with image features (embeddings) extracted with CLIP’s
image encoder. In the zero-shot setting, we use CLIP’s
pretrained off-the-shelf encoders without modifying their
weights. This approach is illustrated in Figure 2.

The images are first processed using the pre-trained ViT
(Vision Transformer) based image encoder, which extracts
relevant visual features from the facial images and gen-
erates the corresponding face templates. These templates
encode the facial attributes in the image. Simultaneously,
the captions corresponding to each facial attribute (such as
age, gender, or facial characteristics) are tokenized using
CLIP’s Tokenizer. This tokenization step converts the tex-
tual descriptions into a format that can be understood by
the model. The tokenized captions are then passed through
the pre-trained Transformer-based text encoder, which gen-
erates embeddings for each caption. These text embeddings
represent the semantic content of the captions in a form
that can be compared to the image embeddings, enabling
the model to map the visual data to corresponding natural
language descriptions effectively.

Fine-tuned CLIP-SMU. For the fine-tuned CLIP-SMU ap-
proach, we keep the image encoders (AdaFace and Swin-
Face) frozen and adapt the weights of the CLIP’s text en-
coder only. This allows the text encoder to adapt to the
workings of the replaced image encoder.

For a batch of (image, text) pairs, the cosine similarities
sim(.), between all the images’ embeddings Iemb and the
corresponding texts’ embeddings Temb, are maximized to
fine-tune the CLIP model via a Symmetric Cross Entropy
(CE) loss function. Image and text logits are obtained when
the cosine similarity is multiplied by the temperature factor

t as shown in Eq (1), and multiplied by 100:

Ilogits = sim(Iemb, Temb) · et

Tlogits = Ilogits
⊺,

(1)

where Iemb and Temb are the images’ and texts’ embed-
dings respectively, and t is the temperature factor, which is
a learnable parameter adapted during training.

The logits are matrices of dimension (batch size ×
batch size). Each row in the image matrix represents the
similarity between a particular image in the batch and all of
the captions in the batch, and vice versa for the text logits.
Therefore, our goal is to maximize the similarity between
the correct pairs of images and captions, i.e., the diagonal
values of the logits matrix, and minimize all the other simi-
larities. For that purpose, the Cross Entropy Loss is used as
an objective function. The cross entropy loss for the pairs
(image-text or text-image) is given by:

H(P,Q) =

N∑
i=1

−Pi logQi, (2)

where Pi is the probability of the i− th element in the true
distribution P (it is either 1 for the correct pair or 0 for
the others), Qi is the probability of the i-th element in the
predicted distribution P , which is calculated from the logits
using the softmax function, and N represents the number of
all possible pairs.

Therefore, the final Symmetric Cross Entropy Loss (CE)
is calculated as a mean value of the image-to-text and text-
to-image cross entropy losses, as shown in Eq (3), i.e.:

CE =
HI(PI , QI) +HT (PT , QT )

2
, (3)

where HI(PI , QI) is the image-to-text cross entropy loss,
derived from the image logits, trying to maximize the di-
agonal values of the image logits matrix. Conversely,
HT (PT , QT ) is the text-to-image cross entropy loss, trying
to maximize the diagonal values of the text logits matrix,
which is a transposed version of the image logits matrix.

3.2. Multi-label and multiple binary classifiers

To provide a reference for the interpretations generated
by the CLIP-SMU approach, we use the AdaFace and Swin-
Face models as the backbones for a multi-label and a binary
facial attribute classifier. Using this approach, our goal is to
represent the encoded information content in the face tem-
plates in the form of binary attribute labels. Since such la-
bels represent standard classifier outputs, this setting serves
as a dual purpose. First and most importantly, it allows us to
automatically generate a (approximate/weak) ground truth
for the CLIP-SMU approaches, and second, it allows us to
interpret the attributes encoded in the face templates using
very basic symbolic representations.
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Figure 3. Multi-label (top) and binary classifiers (bottom).
We implement binary classifiers for the prediction of facial at-
tributes from the facial images to provide a (automatically gener-
ated) ground truth for the interpretations produced by CLIP-SMU.

Figure 3 illustrates the binary classifiers used for the pre-
diction of 47 facial attributes. As can be seen, we rely on
two configurations, one with a multi-label classifier that
predicts all attributes within a single forward pass, and one
with multiple binary classifiers, where a one classifier pre-
dicts one attribute label at the time.

The input to both of the classifiers is a 512-dimensional
feature vector, which is extracted from the pre-trained face
recognition models, AdaFace or SwinFace. The multi-
label classifier processes the feature vector and produces a
47-dimensional output, where each dimension corresponds
to one of the 47 facial attributes (e.g., ”Male”, ”Young”,
”Black Hair”, etc.), while the binary classifier produces
only 1-dimensional output for one particular attribute. To
ensure that each attribute is treated independently, a Sig-
moid activation layer is applied just before the final output
layer. By using a Sigmoid activation function, we ensure
that the classifier treats each attribute prediction separately
rather than as part of a mutually exclusive set of classes,
which would be the case with a Softmax activation func-
tion. This is essential for facial attribute prediction, where
multiple features (like ”Smiling”, ”Eyeglasses” and ”Wear-
ing Hat”) may occur together. Using both configurations in
the experiments allows us to explore the trade-offs between
shared learning of multiple attributes and the focused preci-
sion of individual attribute classifiers.
Training. In both the multi-label and binary classification
setups, we use the Binary cross-entropy (BCE) loss function
to train the classifiers, as shown in Eq. (4), i.e.:

BCE = − 1

N

N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) ,

(4)

where yi is the label of the particular attribute, ŷi is the pre-
diction of the classifier and N is the number of samples.

BCE measures the difference between the predicted
probability of an attribute (after applying the Sigmoid ac-
tivation) and the actual label and allows for each facial at-
tribute to be treated as a binary classification task—whether
the attribute is present or absent.

4. Experimental Setup
4.1. Datasets

For fine-tuning and evaluation, we use facial images
from the VGGFace2 dataset [5]. The text descriptions of
the facial attributes are generated using the MAADFace
dataset [29], which contains annotations of a large set of
attributes for the VGGFace2 images.
VGGFace2 Dataset. The VGGFace2 [5] dataset is a large-
scale face recognition dataset, containing 3.31 million im-
ages of 9131 identities, collected through Google Image
Search. The images represent different pose, age, illumi-
nation, ethnicity and profession of the people. Example im-
ages are presented in Figure 4. The dataset is approximately
gender-balanced, with 59.3% males, varying between 80
and 843 images for each identity, with 362.6 images on av-
erage.

Blond

Eyeglasses

Mustache

Figure 4. Example images from the VGGFace2 dataset. The
faces in VGGFace2 cover different attributes, from variations in
hair color, presence of eyewear to facial hair and others.

VGGFace2 consists of a train and test split, where the
train split features ∼ 3.1 million images, representing 8631
identities, whereas the test split comprises ∼ 160, 000 im-
ages, corresponding to 500 identities.
MAADFace attribute annotations. The Massively Anno-
tated Attribute Dataset (MAADFace) [29] contains face at-
tributes annotations of the VGGFace2 dataset. It consists
of 123.9 million attribute annotations of 47 different binary
attributes. The MAAD-Face database was created by trans-
ferring the attribute annotations of the CelebA and LFW



datasets on the images of VGGFace2, by an annotation-
transfer pipeline. An example of the face attribute anno-
tation is depicted in Figure 5.

Sheet1

Page 1

Attribute ValueAttribute ValueAttribute ValueAttribute Value
Male 1Blond_Hair -1Brown_Eyes 0Eyeglasses -1
Young 0Brown_Hair 0Bags_Under_Eyes 1Attractive -1
Middle_Aged -1Gray_Hair -1Bushy_Eyebrows -1
Senior -1No_Beard 1Arched_Eyebrows -1
Asian -1Mustache -1Mouth_Closed 0
White 1 5_o_Clock_Shadow -1Smiling -1
Black -1Goatee -1Big_Lips -1
Rosy_Cheeks -1Oval_Face 0Big_Nose 0
Shiny_Skin -1 Square_Face -1Pointy_Nose -1
Bald -1Round_Face -1Heavy_Makeup -1
Wavy_Hair -1Double_Chin -1Wearing_Hat -1
Receding_Hairline 0High_Cheekbones -1Wearing_Earrings -1
Bangs -1Chubby -1Wearing_Necktie -1
Sideburns 1Obstructed_Forehead -1Wearing_Lipstick -1
Black_Hair -1 Fully_Visible_Forehead 0No_Eyewear 1

Figure 5. Face attribute annotation example. Green indicates a
positive attribute, red a negative, and yellow a missing annotation.

As the example shows, 1 indicates that the attribute is
positively annotated, −1 means that the attribute is negative,
and 0 implies that the attributes are not defined (there is no
information whether the attribute is positive or negative).

4.2. Data preparation

Since we have different architectures that were imple-
mented, each of them has different requirements regard-
ing the input data preparation. Common to all visual mod-
els, images from the VGGFace2 dataset were first aligned
using the state-of-the-art MTCNN algorithm [34] to pro-
duce images in which the faces are in the center. Since the
VGGFace2 dataset consists of images of individuals with
different poses in the wild which are not taken under con-
trolled conditions, the MTCNN algorithm can not detect all
the faces. For the experiments, we remove those images
and consequently reduce the size of the dataset by ∼ 10%.
Moreover, since fine-tuning with the Cross Entropy Loss
function requires unique (image, text) pairs in every batch,
so it can associate a given text description to one particular
image, there must not be repetitions of the same description
for multiple images. Hence, we filter out the images, such
that for every distinct caption we choose only one image.
The filtering procedure further reduces the dataset, leaving
us with ∼260, 000 training and ∼15, 000 test images. The
images that remain are downsized to 112 × 112 pixels.

For the vision models (i.e., CLIP’s ViT, AdaFace and
SwinFace), all images were first converted to RGB and then
normalized before further processing. For CLIP’s Text En-
coder the generated captions were tokenized using CLIP’s
BPE Tokenizer and then converted to tensors. Finally, for

the binary classifier, a resampling technique was used. ince
the positive and negative labels of the attributes in our
dataset are highly imbalanced, we implemented an over-
sampling technique on the training set, in which the minor-
ity class was randomly over sampled to match the number
of samples of the majority class. For example, the attribute
”Male” consists of ∼ 1.8 million and ∼ 1.2 million positive
and negative training samples respectively, therefore ∼ 600
000 random samples from the negative class were selected
and added to training set in order to equal the number of
positive samples.

4.3. Training details

Fine-tuned CLIP-SMU. In the fine-tuning process, the pre-
trained weights for the image encoders (i.e., CLIP’s im-
age encoder and the face recognition models) were kept
frozen, and only the text encoder was fine-tuned. The batch
size was 256 for the original CLIP model and 64 for the
CLIP-SMU-AdaFace and CLIP-SMU-SwinFace variants.
We used the Adam Optimizer for minimizing the loss.
Multi-label and binary classifiers. With the multi-label
and binary classifiers, the backbone models were kept
frozen and only the added layers were trained. The learning
rate for both the multi-label and binary classifiers was set to
1× 10−5 and the weight decay to 0. The parameters of the
Adam optimizer were the same as described above. Both
multi-label classifiers were trained for 15 epochs, while
the binary classifiers for each attribute (AdaFace and Swin-
Face) were trained for 10 epochs each.

4.4. Performance metrics

To evaluate our models, we used Receiver Operating
Characteristic (ROC) curves and the Area Under the Curve
(AUC) as evaluation measures. The ROC curve is generated
by plotting the True Positive Rate (TPR) against the False
Positive Rate (FPR) at different threshold values. The TPR
and FPR are defined by Eq. (5), i.e.:

TPR =
TP

TP + FN
,

FPR =
FP

TN + FP
,

(5)

where TP, FN, FP and TN represent True Positives, False
Negatives, False Positives and True Negatives, respectively.

5. Results
This section presents the results of our experiments by:

(i) analyzing and comparing the ROC curves and AUC
scores generated by various CLIP-SMU models and clas-
sifiers across 20 facial attributes, and (ii) providing a quali-
tative evaluation of the generated interpretations. It is worth
noting that interpreting the encoded face attributes with
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Figure 6. ROC Curves for the attributes. Dashed and dot-dashed lines represent the baselines the CLIP-based models are compared to
(CLIP Fine-Tuned (blue dashed), AdaFace Multi-Label (green dashed), AdaFace Binary (green dot-dashed), SwinFace Multi-Label (pink
dashed), SwinFace Binary (pink dot-dashed)), while filled lines refer to the different variants of the CLIP-based models (CLIP Pretrained
(blue), CLIP-AdaFace (green), CLIP-SwinFace(pink)).

natural language descriptions produced by the CLIP-SMU
models can be seen as a classification task, where the classi-
fication procedure is based on the similarities of the text de-
scriptions and encoded visual features. ROC curves there-
fore provide insight into which specific attribute-based de-
scriptions the models can most accurately align with the
face templates. In other words, the ROC curves and asso-
ciated AUC scores can be seen as a measure of confidence
into the interpretations produced by the CLIP-SMU models.

Performance Evaluation. As shown in Figure 6, for most
attributes, the fine-tuning of the original CLIP model helps
to improve performance, except for the gender, age and race
related attributes. The fine-tuned CLIP-SMU-SwinFace
model outperforms the CLIP-SMU-AdaFace models in all
of the cases, while both of them fall behind the perfor-
mance of the classification-based approaches (SwinFace

Multi-Label/Binary and AdaFace Multi-Label/Binary) that
provide reference information on the amount of attribute
cues that can be inferred from the face templates.

Several findings can be made from the presented results:

• The AdaFace-based templates lead to the lowest classifi-
cation performance across all considered attributes. Even
with the most capable multi-label and multi-classifier ap-
proaches, the performance is commonly lower than that
of the weakest SwinFace based approach, i.e., CLIP-
SMU-SwinFace. This suggests that the AdaFace model
abstracts away attribute information during the training
process and leads to templates that should (to some ex-
tent) be robust to variations in these attributes.

• The template generation procedure of the SwinFace
model differs significantly from that of AdaFace, as most
of the attributes can be recognized very effectively us-
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Figure 7. Qualitative representation of captions, generated with each of the models. The green colored attributes are the true positives,
i.e., attributes, which the model correctly predicted, while the attributes colored with red are false positives, i.e., attributes, for which it is
incorrectly assumed that are present in the extracted face templates.

ing the reference classification-based approaches. De-
spite the presence of different attributes, the model still
ensures competitive face recognition performance, as ev-
idenced by the state-of-the-art results on the RAF-DB and
CLAP2015 datasets, as reported in [20]. This observation
points to the fact that the SwinFace model successfully
exploits information from various tasks (face recognition,
attribute recognition, expression recognition, etc.) when
learning the model.

• The CLIP-SMU models in general perform weaker that
the reference classification-based approaches, but still
produce valid results in most cases, with CLIP-SMU-
SwinFace outperforming CLIP-SMU-AdaFace results in
most cases. This suggests that the natural language de-
scription of the SwinFace-based model are more reliable
than those of the AdaFace model.

Qualitative Evaluation. Figure 7 shows a qualitative anal-
ysis of the generated captions using each of the CLIP-SMU
models. Note that we show only binary attributes for eas-
ier interpretation, while the models in fact generate de-
scriptions of the form “A photo of a [attributes A]

face with [attributes B]”, where certain attributes
would be placed before or after the word “face” depending
on grammar. As illustrated, when using the pretrained, off-
the-shelf CLIP model in a zero-shot fashion for generating
attribute descriptions, almost all attributes increase the log
likelihood of the predefined captions, which in turn leads to
a high number of false positives, as shown in red in Figure
7. This suggests that the model struggles with interpreting
the information content of the templates and “hallucinates”
some of the attributes. Conversely, CLIP-SMU-AdaFace
has the opposite problem and produces captions with fewer

attributes, leading to a larger number of false negatives, i.e.,
attributes that are present in the input image but are not in-
cluded in the interpretations. It should be noted though that
this behavior is expected and again points to the fact that
AdaFace templates abstract away much of the attribute in-
formation from the input face images. The fine-tuned CLIP-
SMU and CLIP-SMU-SwinFace fall somewhere in between
and generate image interpretations that are true to the actual
face attributes, but also miss some here and there.

6. Conclusion
In this paper, we presented a novel CLIP-SMU approach

to explain the internal mechanisms of face recognition mod-
els by interpreting the information encoded in the extracted
face templates through natural language descriptions. We
implemented different versions of CLIP-SMU and explored
its zero-shot capabilities, as well the feasibility of fine-
tuned CLIP-SMU models. We evaluated the approaches
with templates produced by two state-of-the-art face recog-
nition models, i.e., AdaFace and SwinFace, and showed that
the models are able to interpret the encoded information to
varying extents – depending on the model considered.
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