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Abstract— With the continuous advancement of generative
models, face morphing attacks have become a significant
challenge for existing face verification systems due to their
potential use in identity fraud and other malicious activities.
Contemporary Morphing Attack Detection (MAD) approaches
frequently rely on supervised, discriminative models trained
on examples of bona fide and morphed images. These models
typically perform well with morphs generated with techniques
seen during training, but often lead to sub-optimal performance
when subjected to novel unseen morphing techniques. While
unsupervised models have been shown to perform better in
terms of generalizability, they typically result in higher error
rates, as they struggle to effectively capture features of subtle
artifacts. To address these shortcomings, we present SelfMAD, a
novel self-supervised approach that simulates general morphing
attack artifacts, allowing classifiers to learn generic and robust
decision boundaries without overfitting to the specific artifacts
induced by particular face morphing methods. Through ex-
tensive experiments on widely used datasets, we demonstrate
that SelfMAD significantly outperforms current state-of-the-
art MADs, reducing the detection error by more than 64% in
terms of EER when compared to the strongest unsupervised
competitor, and by more than 66%, when compared to the
best performing discriminative MAD model, tested in cross-
morph settings. The source code for SelfMAD is available at
https://github.com/LeonTodorov/SelfMAD.

I. INTRODUCTION

Automatic face recognition systems (FRSs) [22] are com-
monly employed to verify an individual’s identity by match-
ing their face image with the corresponding data stored in the
system’s database. Although these systems are widely used
and generally very accurate, they are vulnerable to certain
types of attacks representing manipulated data. A notable
example are face morphing attacks [19], [52], [54], created
by blending the facial features of two or more individuals.
The resulting morphed image can then be used to falsely
authenticate any person whose facial attributes were utilized
in the morphing process.

In the age of big data and major advancements in gen-
erative models, the widespread availability of open-source
morphing techniques have made it nearly effortless to create
realistic, high-quality morphed face images [11], [71]. The
automatic detection of face morphing attacks is therefore
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Fig. 1. We propose SelfMAD, a Self-supervised Morphing Attack
Detection method, that learns to detect morphed faces by replicating
common artifacts of various widely used morphing techniques. Pixel
space manipulations simulate artifacts typical for image-level morphing
techniques, while frequency space manipulations reproduce the fingerprints
of latent-space morphing techniques. Self-MAD is robust and generalizes
effectively, without overfitting to specific face morphing attack examples.

critical for preventing illegal activities [1] such as identity
theft, personal document frauds, social engineering attacks
etc. In recent years, the threat posed by morphed image
attacks has been predominantly addressed with the develop-
ment of powerful morphing attack detection (MAD) methods.
In most cases, they rely on supervised, contrastive learning,
optimizing models to differentiate between bona fide images
and examples of known morphing attacks [5], [6], [48].
Although such an approach tends to be highly accurate when
tested on attacks encountered during training, these methods
(i) fail to detect morphs generated by unfamiliar or novel
attacking techniques [11]; and (ii) their performance usually
declines, when applied to data from unfamiliar sources, due
to domain shifts [18].

To overcome the limitation in the generalization capabili-
ties of supervised MADs, some researchers have investigated
the use of unsupervised, one-class models [12], [26]. Instead
of relaying on contrastive learning, their objective is to
capture only characteristics of bona fide training images
and detect morphing attacks as out-of-distribution samples.
While one-class models are expected to generalize better to
previously unseen morphs, they frequently: (i) mistakenly
classify legitimate samples as attacks, particularly when the
bona fide training data does not fully capture the diversity of
real-world scenarios [18]; (ii) struggle with high sensitivity
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to the quality and quantity of the bona fide images used
during training, reducing the models’ robustness to varying
conditions [28]; and (iii) fail to learn distinctive bona fide
features that are absent in manipulated data, which hinders
the MAD models’ ability to identify morphing attacks as
samples that do not fit the modeled patterns [12].

Recently, self-supervised learning has emerged as a
promising alternative to the fully unsupervised training
of one-class models. Unlike unsupervised methods, self-
supervised learning typically utilizes synthetically generated
samples or perturbations, to enhance the model’s ability
to detect subtle or complex anomalies in various forms
of manipulated data. In the context of image manipulation
detection, self-supervised models have been successfully
applied to tasks such as anomaly detection in industrial
images [30], [33], [68], detection of adversarial attacks [16],
[35], [40], presentation attack detection [2], [7], [29], deep-
fake detection [34], [36], [59], detection of AI-synthesized
images [8], [37], [64] etc. Despite these advancements, the
full potential of self-supervised learning methods applied to
the task of morphing attack detection has yet to be explored.

In this paper, we address the challenges of both supervised
and unsupervised approaches by framing morphing attack
detection as a self-supervised task. As a result, we make the
following main contributions in this work:
• We propose SelfMAD, a novel Self-supervised Morphing

Attack Detection method, designed to detect attacks by
simulating common face morphing artifacts present across
various types of manipulations (Fig. 1).

• Through extensive experiments, we demonstrate that our
approach enhances the detection generalization to pre-
viously unseen morphing attacks, reducing the risk of
overfitting to specific morphing techniques.

• We perform a rigorous comparison study against widely
used and highly competitive MAD models, showing that
SelfMAD offers a robust solution, effectively balancing the
strengths of both supervised and unsupervised methods.

• We conduct an in-depth ablation study to assess the impact
of SelfMAD components.

II. RELATED WORK

In this section, we first discuss different widely used
techniques for generation of face morphing attacks. Next, we
present a brief overview of the studies on morphing attack
detection (MAD). Finally, we review self-supervised learning
(SSL) methods applied for detection of out-of-distribution
samples, providing a background of our research work. For
a more in-depth coverage of these topics, readers are referred
to some of the excellent surveys [24], [54], [61].
Morphing Attack Generation. Face morphing attack gen-
eration techniques are generally categorized into traditional
and deep learning-based methods. Traditional approaches
typically operate in the pixel space and involve three main
steps: aligning corresponding face features from two images,
warping them to match geometrically, and blending the
warped images to merge color values [55]. The alignment
relies on detected facial landmarks, and different meth-
ods may use various warping techniques [23], [39], [50],

[53]. However, this process can introduce misaligned pixels,
leading to artifacts and ghost-like images that are often
noticeable. To address these issues, post-processing steps
such as image smoothing, sharpening, edge correction, and
histogram equalization are commonly applied to enhance
image quality and reduce artifacts [57], [65].

With the advent of advanced deep learning-based genera-
tive models, recent approaches have significantly improved
the quality of morphed face images compared to traditional
landmark-based methods. These modern techniques typically
involve embedding two face images into the latent space
of a generative model, performing vector interpolation to
create a morphed image, and then decoding this vector back
into pixel space. While Generative Adversarial Networks
(GANs) are commonly used for this purpose [14], [62], [70],
newer methods also incorporate diffusion-based networks to
achieve even greater image quality and realism [3], [4], [11].
Despite their high level of realism and difficulty to detect,
morphs produced by these generative models still exhibit
detectable irregularities in texture or frequency patterns,
which can reveal their manipulated nature [9].

Morphing Attack Detection. Existing morphing attack de-
tection (MAD) models are in general categorized into single-
image (S-MAD) and differential (D-MAD) approaches. S-
MAD models analyze face morphs individually, without
comparing them to other images, whereas D-MAD models
compare manipulated samples to a reference image. D-
MADs are typically highly accurate in closed-set scenarios,
while S-MADs are primarily employed to detect attacks
when there is no prior knowledge of the subjects’ identities.
In this section, we focus our literature review exclusively on
S-MADs, as they are most closely related to our work.

Regardless of the face morphing technique employed, the
resulting morphs typically exhibit image irregularities such
as noise, pixel discontinuities, distortions, spectrum discrep-
ancies, and other visual artifacts. Early MAD approaches
aimed to detect these irregularities using hand-crafted tech-
niques, including photo-response non-uniformity (PRNU)
noise analysis [51], reflection analysis [56], or texture-based
descriptors like LBP [42], LPQ [43], or SURF [38]. While
these methods produced promising results, their ability to
generalize across different scenarios was limited [12].

More sophisticated MADs take advantage of the capabili-
ties of data–driven, deep learning algorithms [25]. Raghaven-
dra et al. [47], for instance, were amongst the first proposing
pretrained deep models as a supervised approach to the
detection of morphing attacks. In their work, morphs were
detected with a simple, fully-connected binary classifier, fed
with fused VGG19 and AlexNet features, pretrained on Ima-
geNet. Similarly, Wandzik et al. [63], achieved high detection
performance with features extracted from a general-purpose
face recognition systems (FRSs), fed to an SVM, while
another study of Ramachandra et al. [48] utilized Inception
models for the same purpose. Damer et al. [15] on the
other hand argued that pixel-wise supervision, where each
pixel is classified as a bona fide or a morphing attack, is
superior, when used in addition to the binary, image-level



Fig. 2. Overview of Self-MAD, a self-supervised morphing attack detection method that learns to detect morphed faces using a set of bona fide images
and simulated morphing attacks. The model consists of four key components: i) pixel augmenter, to simulate subtle visual variations in real-world images;
ii) pixel artifact generator that mimics artifacts typical for image-level morphing methods; iii) frequency artifact generator which reproduces frequency
fingerprints associated with advanced, latent-level morphing techniques; and iv) classifier differentiate between genuine and manipulated samples.

objective. MixFaceNet [5] by Boutros et al., another highly
efficient deep learning architecture inspired by mixed depth-
wise convolutions, demonstrates even better results [13], by
capturing different levels of attack cues through differently-
sized convolutional kernels. A more complex approach is
proposed by Neto et al., who incorporate a regularization
term during the training of their model OrthoMAD, whose
goal is to disentangle identity features for more robust
morphing attack detection. The follow-up method, IDistill
further improves MAD results by introducing more efficient
feature disentanglement and adding interpretability. All these
supervised approaches however typically experiance a signif-
icant decline in their performance, when applied to images
that do not fit the training distribution.

In some more recent studies, researchers have tried to
improve the generalization capabilities of the MAD tech-
niques, by proposing unsupervised, one-class learning mod-
els trained exclusively on bona fide samples. Different from
the supervised techniques discussed above, Damer et al. [12],
for example, were among the first to achieve significant
performance generalization on unseen attacks with two dif-
ferent one–class methods, i.e. a one-class support vector
machine (OCSVM) and an isolation forest (ISF). Com-
parable generalization capabilities were later demonstrated
in [26], where Ibsen et al. explored the use of a Gaussian
Mixture Model (GMM), a Variational Autoencoder (VAE)
and Single-Objective Generative Adversarial Active Learning
(SO-GAAL) in addition to an OCSVM. A more advanced
approach was proposed by, Fang et al. [18] who enhance
an unsupervised convolutional autoencoder with self-paced
learning (SPL). With this approach, the model neglects
suspicious unlabeled training data, widening the reconstruc-
tion error gap between bona fide samples and morphing
attacks. Ivanovska et al. [28] achieve further improvement in
detection performance by deploying diffusion models to learn
the distribution of bona-fide images. Different from recon-
struction techniques, Fu et al. [21] measure the authenticity
of images through image quality estimation. Nevertheless,
learning distinctive image features in a one-class setting is
still a challenging task, frequently leading to misclassifica-
tion of realistic morphs with subtle inconsistencies.
Self-Supervised Learning for Anomaly Detection. Self-

supervised learning has recently emerged, as a promising
alternative that tackles the challenges of out-of-distribution
sample detection, by combining the strengths of both super-
vised and unsupervised approaches. Unlike fully supervised
methods, which depend heavily on labeled data, and unsuper-
vised one-class models that in contrast focus solely on bona
fide samples, self-supervised techniques utilize automatically
generated labels derived from the data itself. For instance, in
industrial anomaly detection, self-supervised models simu-
late typical defects by synthesizing data representing anoma-
lous samples [30], [33], [68]. In adversarial attack detection,
Deb et al. adopt a similar approach by artificially creating
challenging and diverse adversarial attacks in the image
space [16], while Li et al. and Naseer et al. apply data
manipulation in the latent space. These strategies have been
so far successfully applied to various biometric tasks [2],
[7], [29]. Recently, a notable success has been achieved in
tasks related to deepfake detection. Li et al. and Shiohara et
al. [34], [59] for example, propose simulating typical image
inconsistencies in deepfakes, where and original face has
been either replaced of enhanced. Differently, Wang et al.
choose to simulate frequency artifacts instead of focusing
on local image irregularities [64]. More sophisticated al-
gorithms simulating frequency-based irregularities have also
been proposed by Coccomini et al. [8] and Lu et al. [37] who
demonstrate remarkable generalizability of this approach.

Motivated by the success of the self-supervised paradigm,
in this paper we explore its capabilities in the context of
MAD (morphing attack detection). Unlike existing MAD
methods, we augment normal data by simulating typical mor-
phing irregularities that manifest in both pixel and frequency
domains. This newly generated data is then used to extract
general and robust features for effective attack detection.

III. METHODOLOGY

We introduce SelfMAD, a self-supervised morphing at-
tack detection method designed to recognize manipulated
face images by searching for general inconsistencies that
are common across various types of face morphs, and at
the same time independent of specific face identities. The
proposed method utilizes a proxy task, which simulates
morphing inconsistencies through a three-stage image pre-
processing pipeline that consists of: (i) image augmenta-



tion, (ii) pixel-artifact generation, and (iii) frequency-artifact
generation steps. The manipulated images generated by the
pipeline, along with the original, unprocessed images, are
then used for the training of a neural discriminator, which
learns to distinguish between bona fide and altered samples,
without using actual face morphs. Note that for simulating
morphing inconsistencies, we use various transformations
and frequency masks that have been shown to be suitable
for modeling artifacts and subtle cues induced into facial
images by various (GAN, diffusion, or pixel-level) image-
manipulation techniques. [10], [32], [59], [67] A high-level
overview of SelfMAD is shown in Fig. 2.
Image Augmenter. The first component in our pipeline
focuses on augmenting input images by applying a series of
transformations that alter the visual appearance of the data,
without changing it’s underlying structure. The primary goal
of this processing stage is to simulate subtle (global) visual
variations that may occur in real-world face images. Specif-
ically, given an input bona fide image IOS (original source),
the Image Augmenter applies a set of transformations ψ, to
generate an augmented image IAS (augmented source):

IAS = ψ(IOS), (1)

where ψ ∈ {RGBShift, HueSaturationValue,
RandomBrightnessContrast, RandomDownScale,
Sharpen} comprises five basic (global) image transfor-
mations. Color-related variations in real-world image are
simulated by applying the first two functions in ψ, which
introduce slight adjustments to the RGB and HSV values
of the input sample IOS . The third function additionally
alters the brightness and the contrast of the image. To
mimic real-world variations in image quality, the augmenter
also applies compression at varying intensities, using either
downsampling or sharpen operation that are implemented
with the last two functions in ψ. The parameters for all
five transformation functions are randomly selected within
predefined ranges. After applying ψ, the content of the input
image IOS remains unchanged, ensuring that the transformed
output image IAS is still considered bona fide.
Pixel-Artifact Generator. The second image processing
component of SelfMAD introduces pixel space artifacts
to simulate image irregularities created by traditional,
landmark-based morphing techniques (see section II). To
faithfully replicate the image-level morphing of two non-
identical faces, the pixel artifact generator performs pixel
space blending of the original source image IOS and the
geometrically transformed version of IAS from the previous
SelfMAD step. Formally, the pixel-artifact generator first
creates IAS ′ by transforming IAS with set of functions ζ:

IAS ′ = ζ(IAS), (2)

where ζ ∈ {Translation, ElasticTransform,
Scaling} comprises three key geometrical image transfor-
mations. The first function performs only image translation
in a randomly chosen direction. Therefore, it mimics the
imperfect alignment of corresponding face landmarks, typical
for the morphing of two different faces. The second function,

the elastic transformation, is a smooth, non-linear image
deformation that locally adjusts pixel positions to simulate
variations in the shapes of individual face parts. This function
aims to reflect the natural distinctive features of different
real-world face structures. The third and last function applies
image scaling, consequently adjusting the dimensions of
facial features to capture potential size discrepancies. Finally,
the geometrically transformed image IAS ′ is blended with
the original source image IOS using a blending mask M :

IMS = IAS ′ ⊙ a ·M + IOS ⊙ (1− a) ·M, (3)

where IMS is the resulting morphed image source and
a is the blending factor, uniformly sampled from a set
of predefined discrete values. The blending mask M is a
binary image, that allows the algorithm to selectively apply
pixel artifacts. When all values of M equal 1, the pixel-
artifact generator performs a classical pixel-wise morphing of
IAS ′ and IOS . Alternatively, the pixel-artifact generator can
randomly choose a mask M that represents a combination
of two or more facial parts, segmented by a pretrained
face parser. This strategy helps SelfMAD emphasize pixel
irregularities in different face regions.

Frequency-Artifact Generator. In the third image pro-
cessing stage, the pipeline simulates frequency artifacts
commonly created by generative models that perform face
morphing in their latent spaces, i.e. on face template level
(see section II). These morphs often appear flawless in the
image space, maintaining correct semantics and visual con-
sistency. However, they typically contain so-called frequency
fingerprints that are not present in pristine images. These fin-
gerprints can either represent structured geometrical artifacts
frequently linked to generative adversarial networks (GANs)
or abnormal densities in the frequency spectrum, often asso-
ciated with diffusion-based models. The frequency artifact
generator models these inconsistencies by first creating a
random structured geometrical pattern Φ, then calculating
its Fast Fourier Transform FΦ:

FΦ = FFT (Φ), (4)

where the type of the pattern Φ is uniformly chosen to
represent one of the following: a symmetrical grid, an asym-
metrical grid, a square checkerboard, a circular checkerboard,
randomly distributed squares, a set of random lines or a set
of random stripes. The magnitudes |FΦ| are then separately
superimposed on the magnitudes of the Fourier transform
of the image from the earlier step, i.e. the morphed source
image IMS :

|FMS |′ = (1− k) · |FFT (IMS)| ⊕ k · |FΦ|, (5)

where k is a predetermined constant of the pixel-wise sum-
mation. The resulting magnitude spectra is then transformed
back to the image space, by applying the inverse FFT:

IFMS = InverseFFT (|FMS |′, θ(FMS)), (6)

where θ is the phase spectra of the Fourier transform FMS .



Classifier. The final component of SelfMAD is a classifier
D, optimized by minimizing the binary cross-entropy loss:

LBCE = −
[
y log(D(I)) + (1− y) log(1−D(I))

]
, (7)

where I are the input images generated at different pipeline
stages (IOS , IAS , IMS , and IFMS), y is the corresponding
image label, which equals 0 for bona fide images IOS and
IAS and 1 for simulated morphing attacks IMS , and IFMS ,
while D(I) is the predicted probability of I being a bona fide
or an attack. By leveraging a diverse set of synthetic artifacts,
the classifier learns to identify general features indicative
of morphing attacks rather than overfitting to characteristics
of specific morphing techniques. Moreover, the usage of
different blending masks during the pixel-artifact generation
stage helps the classifier to focus on different regions of the
image. This approach prevents the model from becoming
biased toward facial parts where artifacts might be either
more common or most obvious.

The pseudocode of SelfMAD is given in Algorithm 1.

Algorithm 1 Pseudocode of SelfMAD

1: Input: bona fide RGB images IH×W×3
OS , constant k

2: Output: transformed images IAS , IMS , IFMS , Classi-
fier D

3: Image Augmentation
4: for each image IOS do
5: IAS ← sequentially apply {RGBShift,
6: HueSaturationValue, RandomBrightnessContrast,
7: OneOf(RandomDownScale, Sharpen)} to IOS

8: end for
9: Pixel Artifact Generation

10: for each image IAS do
11: IAS ′ ← sequentially apply {Translation,
12: ElasticTransform, Scaling} to IAS

13: MH×W ← generate a binary blending mask
14: a← Uniform({0.5, 0.5, 0.5, 0.375, 0.25, 0.125})
15: IMS ← IAS ′ ⊙ a ·M + IOS ⊙ (1− a) ·M
16: end for
17: Frequency Artifact Generation
18: for each image IMS do
19: Φ← Uniform({symmetrical grid, asymmetrical grid,
20: random squares, random lines, stripes,
21: square checkerdboard, circular checkerdboard})
22: FΦ ← FourierTransform(Φ)
23: FMS ← FourierTransform(IMS)
24: |FMS |′ ← (1− k) · |FMS | ⊕ k · |FMS |
25: IMAS ← InverseFourierTransform(|FMS |′, θ(FMS))
26: end for
27: Classifier training
28: LBCE ← D(θ, IOS , IAS , IMS , IFMS)
29: ω′ (updated weights of D) ← backpropagate LBCE(ω)

IV. EXPERIMENTAL SETUP

In this section, we first describe the datasets used in our
experiments. Next, we explain the evaluation metrics and
provide details about the implementation of the models.

Fig. 3. Selected samples from FRLL-Morphs [49], representing bona fide
(BF) images (left) and morphing attacks genertated with different morphing
methods, i.e. AMSL, FaceMorpher (FM), OpenCV (OCV), StyleGAN2
(SG), and Webmorph (WM). Note typical ghosting artifacts of landmark-
based morphing attacks and irregulatiries generated with StyleGAN2.

A. Datasets

Training data. In our experiments, we follow the proto-
cols used in some recent MAD papers [6], [25] and train
SelfMAD on SMDD [13]. SMDD is a large-scale synthetic
dataset specifically developed for face morphing attack detec-
tion. The dataset comprises high-quality bona fide and mor-
phed samples, generated with a privacy-preserving approach
based on StyleGAN2, ensuring diversity by simulating a
wide range of facial features and morphing artifacts while
avoiding real-world identity data. The dataset comprises
80, 000 images of size 1024×1024 pixels, including 50, 000
bona fide samples and 30, 000 morphing attacks, evenly split
into training and testing subsets. For training SelfMAD,
we use only the training subset, which contains 25, 000
bona fide images. Raw images are preprocessed by detecting
faces in each image using Dlib [31]. The detected square
face regions are enlarged by a randomly selected margin
between 4% and 20%, then cropped and resized to 384×384
pixels. Additionally, segmentations of individual facial parts
are generated for each cropped face using a pretrained
SegFormer [66]. Both, the cropped RGB images and their
corresponding segmentations, are then fed into SelfMAD and
processed according to the steps described in Section III.

In the experiments, we compare SelfMAD against both,
unsupervised and discriminatively trained MAD methods.
During the training of the unsupervised methods, we follow
the protocols established by their respective authors and use
the bona fide training data reported in the original papers.
Similarly, the discriminative approaches are trained on the
data utilized in their corresponding related works. Discrim-
inatively trained MADs utilize bona fide images and mor-
phing attacks from three publicly available datasets: LMA-
DRD [15], MorGAN [14], and SMDD [13]. The LMA-
DRD dataset includes morphs generated using OpenCV,
with digital morphs labeled as ”D” and re-digitized morphs
(printed and scanned) labeled as ”PS.” The MorGAN dataset
contains two types of morphs: LMA morphs created with
OpenCV and GAN morphs produced using a DCGAN-based
model. In the synthetic StyleGAN2-based SMDD dataset,
both bona fide and morphing attack training subsets are
utilized during training.

Testing data. All MAD methods are tested on six stan-
dard datasets, representing various face morphing genera-



TABLE I
COMPARISON OF SELFMAD AGAINST ONE-CLASS MAD MODELS. OUR SELFMAD IS THE TOP-PERFORMER ACROSS VARIOUS FACE MORPHING

ATTACK TYPES, OUTPERFORMING THE RUNNER-UP SPL-MAD BY 10.12% IN TERMS OF EER, AND BY 17.31% AND 16.1% IN TERMS OF

BPCER@APCER 5% AND 10%, RESPECTIVELY. WHILE SELFMAD SHOWS SLIGHT UNDERPERFORMANCE WITH STYLEGAN2 (SG) MORPHS, IT

SIGNIFICANTLY SURPASSES COMPETITIVE METHODS IN OTHER ADVANCED MORPHING ATTACKS, I.E. MORPH-PIPE, GREEDY-DIM AND MORCODE.

Test data

Model FIQA-MagFace [21] CNNIQA [21] SPL-MAD [18] MAD-DDPM [28] SBI [59] SelfMAD [Ours]
EER BE@AE(%) EER BE@AE(%) EER BE@AE(%) EER BE@AE(%) EER BE@AE(%) EER BE@AE(%)

5.00 10.00 5.00 10.00 5.00 10.00 5.00 10.00 5.00 10.00 5.00 10.00

FRGC-M
FM 33.82 73.79 62.84 42.84 75.94 66.86 16.91 25.39 21.47 25.62 95.12 90.15 16.68 38.07 26.14 5.59 6.43 2.80

OCV 33.30 74.71 62.52 43.15 74.64 66.35 20.75 32.50 25.42 28.22 95.12 90.15 15.32 36.31 25.10 2.59 1.14 0.41
SG 14.21 26.46 17.60 36.51 70.34 57.93 16.80 26.13 21.09 9.02 95.12 90.15 52.90 97.10 94.40 15.84 45.23 25.52

FERET-M
FM 25.14 61.22 44.44 13.23 35.17 19.32 20.42 40.85 27.09 27.98 95.27 90.17 26.47 60.87 52.36 3.19 1.70 0.38

OCV 26.14 61.50 43.95 20.45 58.60 37.23 25.71 57.45 45.60 31.38 95.27 90.17 28.73 70.08 60.61 1.13 0.57 0.38
SG 12.67 24.63 15.71 33.84 79.55 66.17 25.33 62.06 49.72 32.14 95.27 90.17 41.83 90.55 82.42 18.14 46.12 32.33

FRLL-M

AMSL 30.94 77.94 66.18 21.61 60.29 39.22 3.26 0.50 0.50 27.13 94.94 90.02 11.76 24.23 16.78 0.99 0.05 0.05
FM 27.99 73.04 57.35 19.97 57.84 36.76 1.03 0.99 0.99 10.40 95.19 90.38 13.73 36.99 26.10 0.00 0.26 0.17

OCV 24.73 66.18 53.43 7.53 11.76 4.41 1.88 0.50 0.50 13.76 95.17 90.01 12.25 27.85 18.84 0.00 0.00 0.00
SG 7.53 8.82 5.39 35.92 75.49 68.14 14.65 32.18 24.75 14.32 95.17 90.18 44.61 94.68 90.92 10.34 24.22 12.52

WM 27.19 68.14 55.39 21.54 46.57 33.33 6.39 11.39 3.47 30.30 95.09 90.34 39.22 89.93 83.37 3.45 1.64 0.41
Morph-PIPE 49.62 91.54 84.18 66.54 98.83 97.35 18.88 33.62 25.66 13.88 95.14 90.14 30.75 92.41 77.69 5.89 12.44 0.53
Greedy-DiM 47.00 94.61 85.78 49.40 96.08 93.14 37.72 80.69 71.78 36.10 95.20 89.70 33.82 90.60 81.60 7.60 37.60 27.80

MorCode 23.60 53.21 40.63 99.17 100.00 100.00 10.77 19.09 11.86 32.93 95.14 90.06 17.67 58.80 33.46 4.08 3.64 1.21

Average 27.42 61.13 49.67 36.55 67.22 56.16 15.75 30.24 23.56 23.80 95.16 90.13 27.55 64.89 54.99 5.63 12.93 7.46
∗FM: FaceMorpher, OCV: OpenCV, SG: StyleGAN2, WM: Webmorph, BE@AE: BPCER@APCER

tion techniques: FRGC-Morphs [49], FERET-Morphs [49],
FRLL-Morphs [49], Morph-PIPE [69], Greedy-DiM [3],
and MorCode [46]. FRGC-Morphs, FERET-Morphs, FRLL-
Morphs, derived from respective source datasets FRGC [44],
FERET [45] and FRLL [17], contain face morphing im-
ages generated by conventional landmark-based methods
AMSL [41], FaceMorpher, OpenCV, and WebMorph. Addi-
tionally, they also contain a deep–learning subset generated
with StyleGAN2. Similarly, MorCode features GAN-based
images generated using a VQ-GAN-based generator, with
spherical interpolation in its latent space to create a single
morphed image from two input face identities. In contrast,
Morph-PIPE and Greedy-DiM are based on the latest gen-
eration of generative methods, i.e., diffusion models. While
Greedy-DiM is derived from FRLL, MorCode, and Morph-
PIPE morphs both originate from FRGC, and fulfill the qual-
ity constraints laid down by the International Civil Aviation
Organization (ICAO). Selected samples representing bona
fide images and different morphing attacks are presented in
Fig. 3. Faces in all testing images were detected by Dlib [31]
and cropped out with a fixed margin of 12.5%.

B. Evaluation metrics

The model evaluation follows the testing protocol pro-
posed in existing studies [18], [60] to enable consistent
benchmarking and comparability. To ensure compliance with
the ISO/IEC 30107-3 [27], we report the detection Equal
Error Rate (EER), where the Attack Presentation Classifica-
tion Error Rate (APCER), equals the Bona fide Presentation
Classification Error Rate (BPCER). APCER here quantifies
the proportion of attack samples misclassified as bona fide,
while BPCER represents the proportion of bona fide samples
misclassified as attacks. Besides EER, we also report the
MAD performance at two operational points, i.e. BPCER at
fixed APCER values of 5% and 10%.

C. Implementation details

The input to SelfMAD represents RGB bona fide face
images. Face blending masks are generated by combining
face segmentations created with a SegFormer face parser,

pretrained on the CelebAMask-HQ dataset1. Once SelfMAD
generates augmented face images with superimposed pixel
and frequency artifacts, bona fide samples along with sim-
ulated morphing attacks are fed into a binary classifier. For
the classifier we consider 4 different CNN architectures:
EfficientNet-B4, ResNet-152, Swin-B and HRNet-W18. All
of them were pretrained on ImageNet and finetuned until
convergence on samples generated during earlier stages of
SelfMAD. In this paper, we only report results obtained
with HRNet as a backbone, as it achieved the best overall
performance on considered testing datasets. A comparison of
HRNet’s performance against other backbones is provided
in the supplementary material. The classifier is optimized
by SGD combined with SAM [20]. The radius ρ of SAM
is set to 0.05 with a momentum of 0.9, while the learning
rate equals 0.001. SelfMAD is implemented in Python 3.10
with PyTorch 2.4 and CUDA 12.5. Experiments were run on
NVIDIA GeForce RTX 4090. The source code of SelfMAD
is available at https://github.com/LeonTodorov/SelfMAD.

V. RESULTS

In this section, we first compare SelfMAD against com-
petitive one-class and discriminatively trained MAD models.
Next, we investigate the impact of different SelfMAD com-
ponents on model’s performance. Finally, we visualize the
regions of interest identified by SelfMAD when the model
classifies a sample as a morphing attack.
Comparison against one-class MADs. SelfMAD is de-
signed to be trained exclusively with bona fide input samples,
so we first compare its performance against other highly
competitive one-class methods. The results are summarized
in Table I. As shown, SelfMAD achieves the best overall
performance across various face morphing attack types,
surpassing the runner-up SPL-MAD [18] by 10.12% in
terms of EER, and by 17.31% and 16.1% in terms of
BPCER@APCER 5% and 10%, respectively. We note, that
SelfMAD is especially successful in the detection of more
recent, advanced GAN and diffusion-based morphing attacks
from Morph-PIPE, Greedy-DiM and MorCode, improving

1https://huggingface.co/jonathandinu/face-parsing

https://github.com/LeonTodorov/SelfMAD


TABLE II
COMPARISON OF SELFMAD AGAINST DISCRIMINATIVE MAD MODELS IN TERMS OF EER, BPCER@APCER (5%) AND BPCER@APCER

(10%). SELFMAD SIGNIFICANTLY OUTPERFORMS COMPETING METHODS ACROSS ALL MORPHING ATTACK CATEGORIES, EXCEPT FOR FRGC AND

FERET STYLEGAN2 (SG) MORPHS, WHERE OUR METHOD SHOWS A SLIGHT UNDERPERFORMANCE.

Model Train Test data: FRGC-M FERET-M FRLL-M Morph- Greedy- MorCode Averagedata FM OCV SG FM OCV SG AMSL FM OCV SG WM PIPE DiM

M
ix

Fa
ce

N
et

[5
]

D
EER 32.43 20.34 19.59 27.92 33.59 37.49 23.15 10.84 10.84 19.70 31.03 46.64 45.10 39.83 28.46

BE@AE(%) 5.00 85.89 51.97 64.63 69.38 79.40 91.87 71.40 23.71 39.97 54.58 85.26 98.41 93.40 92.79 71.62
10.00 73.44 37.03 41.91 57.09 68.43 81.10 61.47 13.66 18.02 39.20 71.01 95.75 85.60 84.90 59.19

PS
EER 25.54 30.13 19.75 31.40 29.62 30.19 19.70 8.87 9.85 11.82 30.05 61.51 41.67 43.84 28.14

BE@AE(%) 5.00 75.31 79.25 46.89 82.61 77.13 83.93 56.55 15.38 28.26 28.07 76.82 100.00 89.00 92.19 66.53
10.00 55.19 64.83 33.82 73.53 66.16 68.43 45.06 8.33 14.00 17.76 65.36 99.62 78.80 84.45 55.38

LMA
EER 35.76 32.33 17.26 36.07 33.95 27.43 27.09 27.09 18.23 29.06 45.81 35.18 40.69 37.28 31.66

BE@AE(%) 5.00 85.58 85.06 49.38 84.12 89.41 76.37 84.64 69.93 44.64 83.39 94.35 78.15 93.40 83.84 78.73
10.00 76.35 72.93 30.81 76.75 78.45 61.63 74.53 49.05 27.27 71.11 90.01 66.16 88.00 74.51 66.97

GAN
EER 26.25 29.91 33.40 44.08 44.72 48.19 45.32 46.80 39.41 39.41 44.83 56.62 48.04 54.42 42.96

BE@AE(%) 5.00 76.45 80.71 89.94 95.46 90.55 94.90 95.45 97.08 96.56 85.76 95.25 99.85 97.00 99.39 92.45
10.00 60.89 68.78 79.36 90.74 83.55 88.66 88.83 92.35 93.94 78.97 92.55 99.24 93.40 95.75 86.21

SMDD
EER 14.32 14.35 13.03 19.99 20.62 36.64 31.03 8.37 9.85 38.92 31.03 33.69 39.71 37.55 24.94

BE@AE(%) 5.00 33.40 35.27 26.97 53.69 53.88 87.33 65.56 11.51 15.89 84.94 78.38 85.66 90.20 86.12 57.77
10.00 20.95 20.95 15.87 34.97 39.51 75.24 60.00 8.16 10.07 76.27 67.16 73.75 86.20 76.10 47.51

D
is

cr
im

in
at

iv
el

ly
tr

ai
ne

d

PW
-M

A
D

[1
5]

D
EER 36.44 38.64 36.70 14.60 11.55 40.61 35.96 14.78 11.33 35.96 35.96 13.36 17.16 17.87 25.78

BE@AE(%) 5.00 95.12 91.29 97.82 47.26 21.55 95.84 87.08 69.85 22.19 93.94 90.09 54.93 64.20 50.15 70.09
10.00 86.00 83.51 93.67 25.33 13.99 88.09 71.95 33.51 12.04 80.61 75.68 22.76 36.60 33.92 54.12

PS
EER 42.81 53.80 38.02 14.88 11.48 45.29 22.66 15.76 7.88 28.57 26.60 20.97 33.82 34.74 28.38

BE@AE(%) 5.00 94.92 98.86 66.29 52.93 17.39 97.16 53.75 34.28 12.29 78.15 66.67 65.63 83.40 85.13 64.77
10.00 89.52 97.20 59.13 32.70 12.29 93.95 46.85 22.42 6.72 67.02 48.81 50.30 70.00 73.60 55.04

LMA
EER 21.53 12.93 19.08 18.50 24.66 26.44 18.23 10.34 12.81 19.21 39.41 17.27 17.16 21.15 19.91

BE@AE(%) 5.00 93.67 48.86 61.00 75.99 75.99 77.69 47.49 26.72 27.35 42.39 92.22 54.32 40.80 56.68 58.66
10.00 66.29 20.12 39.21 48.58 65.97 60.87 33.47 12.54 19.66 30.20 83.70 33.69 28.60 39.98 41.63

GAN
EER 47.17 46.01 24.09 12.19 25.02 43.23 47.78 21.18 31.03 48.28 50.25 32.18 15.20 54.89 35.61

BE@AE(%) 5.00 99.79 99.07 100.00 31.95 70.51 88.66 92.41 66.07 97.22 97.46 93.61 96.28 39.60 87.71 82.88
10.00 98.76 97.72 100.00 16.82 54.63 80.15 88.00 48.80 83.21 90.59 89.76 81.49 22.20 83.16 73.95

SMDD
EER 15.97 19.33 15.36 8.36 16.09 20.91 4.43 1.97 2.46 17.24 9.85 20.40 42.16 39.29 16.70

BE@AE(%) 5.00 51.76 56.85 35.68 42.34 74.48 81.47 4.64 1.72 1.80 34.62 12.29 55.39 95.40 93.63 45.86
10.00 29.25 38.90 21.06 5.10 35.92 53.31 2.21 1.29 0.90 26.43 9.75 37.78 86.80 86.65 31.10

In
ce

pt
io

n
[4

8]

D
EER 42.22 30.26 39.19 14.74 15.59 11.27 55.67 39.41 28.57 25.62 65.52 33.63 31.86 10.91 31.75

BE@AE(%) 5.00 96.89 93.57 89.00 31.57 32.33 21.93 99.26 81.36 69.45 67.59 99.92 95.90 85.40 21.70 70.42
10.00 90.15 80.29 78.11 21.55 20.98 13.04 98.48 70.45 57.82 57.77 99.75 82.09 77.40 12.06 61.43

PS
EER 43.87 20.50 24.86 30.33 27.64 16.65 50.25 32.02 41.38 33.50 39.90 8.30 51.96 27.58 32.05

BE@AE(%) 5.00 93.36 53.11 47.10 69.57 64.84 31.38 99.49 78.95 92.79 75.04 93.28 20.18 95.20 72.00 70.45
10.00 85.89 37.34 38.28 57.84 53.69 22.12 98.16 68.99 88.94 68.33 87.96 5.16 92.20 61.08 61.86

LMA
EER 27.19 30.26 42.39 27.21 36.57 29.91 12.81 8.37 19.21 19.70 24.14 58.38 25.98 29.59 27.98

BE@AE(%) 5.00 79.46 89.00 91.70 70.32 86.77 81.85 35.26 20.10 63.47 66.94 72.73 100.00 66.00 63.73 70.52
10.00 60.48 76.04 84.34 57.47 73.72 68.81 20.37 5.76 41.52 48.61 64.13 99.92 46.00 51.75 57.06

GAN
EER 49.76 49.08 41.67 51.10 52.73 35.79 75.86 67.49 59.61 67.49 59.61 40.76 29.90 61.98 53.06

BE@AE(%) 5.00 99.69 98.76 95.23 95.65 98.11 82.99 100.00 99.31 98.94 98.53 99.84 95.45 86.60 100.00 96.36
10.00 98.65 96.58 89.83 92.25 96.98 72.40 100.00 98.71 96.97 97.55 99.43 89.98 73.00 99.70 93.00

SMDD
EER 18.82 23.38 32.82 19.42 43.80 38.98 7.88 2.96 15.27 19.70 11.33 11.90 56.86 11.24 22.45

BE@AE(%) 5.00 54.15 67.12 99.90 69.57 100.00 99.43 11.03 2.66 37.59 45.58 18.18 26.02 100.00 21.55 53.77
10.00 35.68 47.61 97.20 46.12 99.43 93.76 7.17 2.23 22.60 35.84 12.69 14.64 99.80 13.81 44.90

EER 5.59 2.59 15.84 3.19 1.13 18.14 0.99 0.00 0.00 10.34 3.45 5.89 7.60 4.08 5.63
SelfMAD BE@AE(%) 5.00 6.43 1.14 45.23 1.70 0.57 46.12 0.05 0.26 0.00 24.22 1.64 12.44 37.60 3.64 12.93

10.00 2.80 0.41 25.52 0.38 0.38 32.33 0.05 0.17 0.00 12.52 0.41 0.53 27.80 1.21 7.46
∗FM: FaceMorpher, OCV: OpenCV, SG: StyleGAN2, WM: Webmorph, BE@AE: BPCER@APCER

TABLE III
ABLATION STUDY EVALUATING DIFFERENT SELFMAD COMPONENTS. WHILE THE PIXEL ARTIFACT GENERATOR (PAG) ALONE ACHIEVES

STRONG MORPHING DETECTION PERFORMANCE, COMBINING IT WITH THE FREQUENCY ARTIFACT GENERATOR (FAG) ENHANCES THE OVERALL

SELFMAD PERFORMANCE ACROSS VARIOUS ATTACK CATEGORIES.

Test data: FRGC-M FERET-M FRLL-M Morph- Greedy- MorCode AverageFM OCV SG FM OCV SG AMSL FM OCV SG WM PIPE DiM

PAG
EER 7.24 3.52 8.02 6.17 2.83 21.05 1.48 0.00 0.00 9.36 8.37 2.21 26.00 3.08 7.10

BE@AE(%) 5.00 11.31 2.39 18.88 7.37 1.51 48.02 0.28 0.26 0.00 13.09 12.37 0.08 95.40 1.59 15.18
10.00 4.56 0.52 6.33 2.46 1.32 36.29 0.09 0.26 0.00 9.00 5.57 0.08 90.20 0.38 11.22

FAG
EER 66.41 47.88 36.05 54.36 54.78 23.39 83.25 82.27 73.40 46.80 80.79 97.93 78.40 97.79 65.96

BE@AE(%) 5.00 100.00 100.00 98.13 98.87 98.30 48.58 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 95.99
10.00 100.00 99.59 94.50 95.84 95.65 37.43 100.00 100.00 100.00 99.67 100.00 100.00 100.00 100.00 94.48

SelfMAD
EER 5.59 2.59 15.84 3.19 1.13 18.14 0.99 0.00 0.00 10.34 3.45 5.89 7.60 4.08 5.63

BE@AE(%) 5.00 6.43 1.14 45.23 1.70 0.57 46.12 0.05 0.26 0.00 24.22 1.64 12.44 37.60 3.64 12.93
10.00 2.80 0.41 25.52 0.38 0.38 32.33 0.05 0.17 0.00 12.52 0.41 0.53 27.80 1.21 7.46

∗FM: FaceMorpher, OCV: OpenCV, SG: StyleGAN2, WM: Webmorph, BE@AE: BPCER@APCER

the average EER performance of the runner-ups in these
three datasets, SBI [59] and MAD-DDPM [28], by more
than 78%. However, while SelfMAD outperforms other
models in most morphing attack categories, it exhibits slight
underperformance in detecting StyleGAN2 (SG) morphs. In
this specific category, the MAD approach based on face im-
age quality assessment, FIQA-MagFace [21], demonstrates
superior results despite having one of the lowest overall
performance with an average EER of 27.42%. Notably,
SBI, a self-supervised model, that is conceptually closest
to SelfMAD, is outperformed by our model by a large
margin of 21.92% EER, 51.96% BPCER@APCER 5% and

47.53% BPCER@APCER 10%. This finding highlights the
advantages of our proposed approach for the specific task of
face morphing attack detection.

Comparison against discriminative MADs. We also com-
pare SelfMAD against state-of-the-art discriminative MAD
techniques, i.e., MixFaceNet [5], PW-MAD [15] and Incep-
tion [48]. This comparison aims to evaluate the general-
izability of the discriminatively trained models, similar to
the cross-dataset experiments conducted in [18] and [28].
For this purpose, we train each competing model in a two-
class setting, using training images from a different set of
morphing attacks than those used in the evaluation phase.
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Fig. 4. GradCAM visualizations of SelfMAD, generated with HRNet-W18 as backbone. Heatmaps highlight eyes, nostrils, lip borders and hair, as areas
where morphing pixel irregularities are most prominent. Note that StyleGAN2 images are also prone to asymmetries and blurry edges in these regions.

We run five training sessions, each time using a new, distinct
type of face morphing attack as the training data and then test
the trained models on testing splits from another datasets.
The results, presented in Table II, show that SelfMAD is
again the top-performer, surpassing the runner-up, PW-MAD
trained on SMDD, by a large margin of 11.07% in terms of
EER, 32.93% in terms of BPCER@APCER 5% and 23.64%
in terms of BPCER@APCER 10%. However, we again note
that SelfMAD shows a slight underperformance in FRGC
and FERET StyleGANv2 (SG) morphs.

Ablation. To assess the contributions of individual compo-
nents in SelfMAD, we conduct an ablation study, where
we evaluate the model’s detection performance under three
scenarios: (1) we generate only pixel-space artifacts, (2)
we generate only frequency-space artifacts, and (3) both,
pixel and frequency artifacts, are added to the original bona
fide input image. The results of this analysis, conducted
with the best-performing SelfMAD backbone, HRNet-W18,
are summarized in Table III. Notably, the generation of
pixel-space artifacts alone yields strong morphing attack
detection performance across various morphing techniques,
including some advanced approaches, such as StyleGAN2,
Morph-PIPE and MorCode. In contrast, the generation of
only frequency-space artifacts performs poorly, in terms of
all three evaluation metrics. However, when combined with
pixel-level artifacts, frequency-space artifacts significantly
reduce the EER and BPCER@APCER performance in most
of the morphing attack categories. This finding underscores
the advantage of our method in leveraging both artifact gen-
eration strategies to enhance overall detection performance
in diverse morphing attack scenarios.

Explainability Analysis. To gain deeper insight into Self-
MAD, we generate Grad-CAM [58] heatmaps, that show
the regions of interest identified by the model during the
classification of bona fide and morphing attack samples.
For this purpose, we use the best-performing SelfMAD
backbone, HRNet-W18, and extract heatmaps at the fourth

stage of the classifier. Selected examples are illustrated in
Fig. 4. We observe that SelfMAD primarily focuses on the
eyes, nostrils and borders of the lips. These regions are in fact
facial parts where pixel-space irregularities, such as ghosting
artifacts, are most apparent. Similarly, StyleGAN2-generated
face images are also know to exhibit inconsistencies in these
areas, such as asymmetries, unnatural reflections, blurry
edges or a lack of clear edge definition etc. Additionally,
in some images the model also highlights hairy regions such
as beard, mustache, eyebrows and hairstyles (Fig. 4, row 4).

VI. CONCLUSION

We presented SelfMAD, a self-supervised model that
detects face morphing attacks by replicating typical artifacts
of various common face morphing techniques. In extensive
experiments across multiple widely used datasets, SelfMAD
consistently outperformed state-of-the-art MAD models, re-
ducing the equal error rate (EER) by a significant margin
compared to leading discriminative and unsupervised MAD
approaches. By leveraging both pixel and frequency-space
artifacts generation, SelfMAD demonstrated superior gener-
alization, particularly against unseen morphing techniques.

Limitations and Future Work. Despite its strong perfor-
mance, SelfMAD has some limitations. While the model
shows robustness across a range of face morphing tech-
niques, including some very recent GAN and diffusion-
based attacks, its detection performance slightly decreases
when confronted with face morphs produced StyleGAN2. To
address this issue, our future work will focus on enhancing
the augmentation techniques used to simulate morphing
artifacts, incorporating additional proxy tasks to further
boost the model’s performance. Moreover, we plan to refine
the feature extraction architecture and further expand our
evaluation experiments by including additional recent face
morphing attack methods to provide an even broader and
more comprehensive assessment of our approach.



VII. ETHICAL IMPACT STATEMENT

The primary goal of this work is to enhance the robustness
and generalization of Morphing Attack Detection (MAD)
techniques in order to protect face recognition systems from
identity fraud and other security threats. The presented
research does not involve human subjects, and all datasets
utilized are publicly available, ensuring compliance with
standard ethical practices in data handling.

We acknowledge that the use of facial recognition tech-
nologies has raised concerns about privacy, surveillance, and
potential misuse in societal contexts. However, the proposed
SelfMAD method does not pose significant privacy concerns,
as it is designed exclusively to detect manipulated face
images (morphs) rather than perform face recognition. The
development and deployment of MAD systems enhance the
security of face recognition technologies, helping prevent
identity theft and fraud by ensuring individuals cannot use
morphed images to falsely authenticate themselves.

While MAD technology has clear benefits in securing
digital identity systems, we acknowledge that there is a pos-
sibility for unintended misuse if deployed without adequate
oversight. For example, in contexts where MAD tools are
used, improper configurations or interpretations of results
could lead to incorrect conclusions, such as misidentifying
legitimate users as fraudulent due to false positives. To
mitigate such risks, we recommend adherence to strict op-
erational protocols, including continuous performance eval-
uation, calibration for different datasets, and clear guidelines
on the application scope.

It is important to note that the standard public datasets
used in this research, while widely accepted in the research
community, may carry inherent biases, such as imbalanced
demographics, which could influence the performance of
the proposed model. In this work, we adhered to estab-
lished protocols from prior studies to ensure consistency
and comparability. However, we emphasize the need for
future research to incorporate more diverse datasets and
benchmarks that better reflect real-world scenarios, reducing
potential biases and enhancing fairness in MAD systems.
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P. C. Neto, T. Gonçalves, A. F. Sequeira, J. S. Cardoso, J. Tremoço,
M. Lourenço, S. Serra, E. Cermeño, M. Ivanovska, B. Batagelj,
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Trained Reconstruction Embedding for Surface Anomaly Detection. In
Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 8330–8339, October 2021. 2, 3

[69] H. Zhang, R. Ramachandra, K. Raja, and C. Busch. Morph-PIPE:
Plugging in Identity Prior to Enhance Face Morphing Attack Based on
Diffusion Model. In Proceedings of Norwegian Information Security
Conference (NISK), 2023. 6

[70] H. Zhang, S. Venkatesh, R. Ramachandra, K. Raja, N. Damer, and
C. Busch. MIPGAN—Generating Strong and High Quality Morphing
Attacks Using Identity Prior Driven GAN. IEEE TBBIS, 3(3):365–383,
2021. 2

[71] K. Zhang, Y. Zhou, X. Xu, B. Dai, and X. Pan. DiffMorpher:
Unleashing the Capability of Diffusion Models for Image Morphing.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 7912–7921, 2024. 1


	Introduction
	Related work
	Methodology
	Experimental Setup
	Datasets
	Evaluation metrics
	Implementation details

	Results
	Conclusion
	Ethical Impact Statement
	References

