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Ziga Babnik', Deepak Kumar Jain?, Peter Peer', Vitomir Struc!
!University of Ljubljana, Ljubljana, Slovenia
Dalian University of Technology, Dalian, China

@ -
O
>O<.
O
§OL

W

Input Samples

@

O

g (N X ) —> ||||||||||||||”||||
;Oxg

Face Recognition Model

ooe —»%:z?;;ﬂ
bl (59)

. il

Quality Estimates

Figure 1. Illustration of the concept behind the proposed FROQ' technique. Face Recognition (FR) models condense face samples
into feature vectors. In the process, they encode identity-specific information, but also other non-identifying cues, such as face-sample

quality [4, 25,

]. Unsupervised Face Image Quality Assessment (FIQA) techniques can extract quality information directly from FR

models, but incur a high computational cost. Supervised techniques are efficient, but typically require extensive training with complex
loss functions and dedicated (FIQA) model architectures. FROQ combines the best from both worlds and efficiently estimates face-image
quality using only the given FR model, by observing a set of specific, carefully chosen intermediate representations, while avoiding costly

training and the reliance on custom FIQA-model architectures.

Abstract

Face Recognition (FR) plays a crucial role in many crit-
ical (high-stakes) applications, where errors in the recog-
nition process can lead to serious consequences. Face Im-
age Quality Assessment (FIQA) techniques enhance FR sys-
tems by providing quality estimates of face samples, en-
abling the systems to discard samples that are unsuitable
for reliable recognition or lead to low-confidence recogni-
tion decisions. Most state-of-the-art FIQA techniques rely
on extensive supervised training to achieve accurate quality
estimation. In contrast, unsupervised techniques eliminate
the need for additional training but tend to be slower and
typically exhibit lower performance. In this paper, we in-
troduce FROQ' (Face Recognition Observer of Quality), a
semi-supervised, training-free approach that leverages spe-
cific intermediate representations within a given FR model
to estimate face-image quality, and combines the efficiency
of supervised FIQA models with the training-free approach
of unsupervised methods. A simple calibration step based
on pseudo-quality labels allows FROQ to uncover specific
representations, useful for quality assessment, in any mod-
ern FR model. To generate these pseudo-labels, we pro-
pose a novel unsupervised FIQA technique based on sam-
ple perturbations. Comprehensive experiments with four
state-of-the-art FR models and eight benchmark datasets

! FROQ is pronounced as FROG.

show that FROQ leads to highly competitive results com-
pared to the state-of-the-art, achieving both strong per-
formance and efficient runtime, without requiring explicit
training. The code for FROQ is available from: https:
//github.com/LSIbabnikz/FROQ

1. Introduction

Face Recognition (FR) is an important research area with
numerous real-world applications in security and surveil-
lance, border control, police investigations, online banking,
and mobile applications, among others [13]. The reliabil-
ity of FR models in these applications is critical, as errors
in the recognition process can compromise user privacy, re-
sult in monetary loss, or even lead to legal consequences.
While significant advances have been made in FR technol-
ogy over the years, FR systems still fail to accurately de-
termine identity when deployed in challenging acquisition
conditions [9, 15,4 1], where variations in pose, illumination,
or other environmental factors cannot be controlled for. To
mitigate these issues, FR models often incorporate Face Im-
age Quality Assessment (FIQA) techniques with the goal of
assessing the fitness of the input images for recognition.

In accordance with ISO/IEC 29794-1 [21], modern
FIQA techniques most often generate a unified quality score
that corresponds to the utility of the given face sample for
the task of recognition. Here, the utility is typically mea-



sured by how likely the sample is to cause false-match er-
rors during the recognition process. In this manner, samples
less likely to cause false-match errors are considered to be
of higher quality. The quality (or utility) estimates allow
FR systems to reject or recapture samples below a certain
quality threshold, improving the system’s reliability.

Existing FIQA techniques can be broadly categorized
into: unsupervised and supervised methods. Unsupervised
methods typically estimate sample quality by looking at the
behavior of the FR model to perturbations applied to the
input face sample [3-5, 40]. Supervised methods, on the
other hand, commonly train a quality-regression model, use
pseudo-quality labels [10, 31,42], rely on a specific loss
function [6, 23, 29], or external (often generative) proxy
tasks [5, 16,32]. Unlike supervised methods, unsupervised
techniques are easily adapted to any target FR model, but
they are noticeably slower when assessing quality, as they
require several forward or even additional backward passes
through the target FR model. Supervised methods are more
efficient during inference, but often rely on dedicated model
architectures and, hence, require more work to be adapted
for a specific target FR model.

In this paper, we present a novel quality assessment
technique, called FROQ (Face Recognition Observer of
Quality), capable of accurately estimating face-sample
quality that needs only a single forward pass through the
FR model, as shown in Figure 1. The method can be easily
adapted to any FR model and requires no supervised train-
ing or additional parameters to tune. The main contribu-
tion of the approach is the Quality Observer, whose goal
is to closely monitor specific intermediate representations
produced by the FR model during the recognition process.
These representations are used as is to estimate the final
quality score for a given input face sample. To discover use-
ful intermediate representations, we present a simple semi-
(or weakly) supervised approach, which evaluates the use-
fulness of individual representations for the task of quality
estimation through the use of a small quality-labeled cali-
bration set. In this way, FROQ combines the characteristics
of both supervised and unsupervised techniques, achieving
excellent runtime, estimating the quality within a single for-
ward pass, without the need for any supervised training or
additional FR-model parameters.

2. Related Work

In this section, we provide a brief overview of relevant
work on face image quality assessment and discuss both un-
supervised and supervised FIQA techniques. For a more
comprehensive coverage of the topic, please see [36].

Unsupervised Methods. Unsupervised FIQA methods do
not require any supervision when building FIQA models.
Instead, they commonly estimate sample quality by observ-
ing the effects of various perturbations on the sample’s rep-
resentation within the latent space of the target FR model.

One of the earliest methods, SER-FIQ [40], applied dropout
to intermediate representations to estimate sample quality.
The dropout layer removes certain values from the repre-
sentation and can be seen as a type of random occlusion on
the latent representation. FaceQAN [4] proposed an adver-
sarial attack to predict quality. More specifically, it used
the noise applied to the sample during an (adversarial) at-
tack as the perturbation of choice. Recently, DifFIQA [5]
introduced a combined approach, using two separate per-
turbations, encapsulated in the process of modern denoising
diffusion probabilistic models (DDPMs). GraFIQs [25] pre-
sented a new type of unsupervised FIQA approach, focused
on the statistics of the batch normalization layers during the
backward pass through the target FR model. A common
characteristic of unsupervised FIQA techniques is that they
can typically be applied to any modern FR model without
additional adjustments. However, they commonly require
several forward or even backward passes to estimate qual-
ity, making them less computationally efficient.

Supervised Methods. Supervised FIQA techniques com-
monly require training (auxiliary) quality-regression net-
works or fine-tuning existing face recognition models to es-
timate face-sample quality and can be further subdivided by
whether they need pseudo-quality labels or not.

Methods requiring pseudo-quality labels employ differ-
ent annotation techniques to obtain the labeled data. The
annotated data is then used to train quality regression mod-
els. One of the earliest methods in this category, by Best-
Rowden and Jain [7], utilizes labels provided by human an-
notators, while FaceQNet, proposed by Hernandez-Ortega
et al. [17, 18], was among the first employing automati-
cally generated pseudo-quality labels, computed by com-
paring input face samples to the highest-quality images
(references) of the same identity. A more robust approach,
PCNet [42], used comparisons between several genuine
(positive) samples to determine the pseudo labels. SDD-
FIQA [31] extended the idea presented by PCNet by also
considering information from imposter image pairs. A sim-
ilar approach was later used in LightQnet [10], with an ad-
ditional focus on minimizing the parameter count of the fi-
nal quality extraction model. A quality-label optimization
approach, applicable to any set of pseudo-quality labels,
was proposed in eDifFIQA [6], leading to highly compet-
itive results. Finally, CLIB-FIQA [32] presented a unique
supervised technique that used labels of individual qual-
ity factors, such as blur, occlusion, lighting, efc., in com-
bination with the CLIP encoder [34] to train a quality es-
timation model. While techniques from this group usu-
ally achieve good results, they need additional training on
pseudo-quality labels and are limited by the expressiveness
of the label generation process.

On the other hand, supervised FIQA methods that do not
require pseudo-quality labels often use a custom loss func-
tion to train a model that can estimate both the feature and
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Figure 2. High-level overview of FROQ. FROQ estimates sample quality by observing specific intermediate representations produced by
the recognition process. The quality score g, for a given sample x is computed by applying an aggregation function S(-) on the values of
the observed intermediate representations {2~ };cxc. The set of intermediate representations /C observed during the recognition process is
determined in the Observer Initialization step. Here, each layer of a given FR model is evaluated using a calibration set of images and their
corresponding quality scores obtained through an auxiliary FIQA approach, using Spearman’s rank correlation p(-).

quality of a given face sample. For this reason, such meth-
ods are also called quality-aware FR methods. One of the
earliest such methods, PFE [39], learns a mean and vari-
ance vector, corresponding to the feature and quality of the
given sample. MagFace [29] proposes an extension of the
popular ArcFace [12] loss function, with a magnitude-aware
term, enabling the model to encode quality information into
the magnitude of the feature vector. A special type of such a
method, CR-FIQA [8], uses information encoded in the fea-
ture space of a trained model to estimate the quality of sam-
ples. Specifically, it uses the Certainty-Ratio, which com-
pares the distances of the given sample to the positive class
center and the nearest negative class center.

Our Contribution. The proposed FROQ technique lever-
ages pseudo-quality labels; however, unlike supervised
methods, the labels are not used to train a quality regres-
sor. Instead, FROQ uses the labels to uncover intermediate
representations of the target FR model that are useful for
quality assessment. In this process, no new information is
encoded into the FR model. For this reason, we categorize
FROQ as a semi-supervised technique, combining charac-
teristics of both unsupervised and supervised methods. It
can compute the quality scores quickly, using a single for-
ward pass through the FR model, without needing explicit
training or limiting the target FR model to a specific loss.

3. Methodology

The main goal of FR models is to extract identity in-
formation from any given face sample, in the form of a
dense identity-information-rich representation called a fea-
ture vector. It has been shown that FR models also encode
non-identifying information about the samples, such as face
pose, expression [22], as well as the quality of the sam-
ple [4,31,40]. In this section, we now introduce FROQ, a
new semi-supervised FIQA approach that requires no train-
ing and can accurately predict sample quality using only a
single forward pass through the target FR model. To esti-
mate quality, FROQ uses a Quality Observer, which tracks
values of predetermined intermediate representations of the

given FR model, as shown in Fig. 2. The sample qual-
ity is then computed directly from the observed represen-
tations using a simple aggregation function. Both the set of
observed intermediate representations and the aggregation
function are determined in the Observer Initialization step.

3.1. Overview

Assume a FR model M, which consists of L layers and
is parameterized by {¢'}F_ |, where ¢! are the parameters
of the [-th layer. The goal of FROQ is to extract a quality
estimate g, of the input face sample z using the predefined
Quality Observer. Here, the observer determines the qual-
ity g, using a single forward pass of the sample x through
the recognition network M. It is defined by two dependent
components: (i) the aggregation function S(-), and (i7) the
set of intermediate representations XC. The role of the aggre-
gation function is to map any intermediate representation z’
into a single numerical value, where 27 € {2'}£ | is the in-
termediate representation produced by the j-th layer of the
model M. The set IC determines which representations will
be observed and subsequently used for quality estimation.

3.2. Observer Initialization

The quality observer is at the core of the proposed FROQ
technique. During inference, it accurately determines the
quality of any input sample by simply looking at specific
intermediate layers. The values of the intermediate repre-
sentations are first condensed into a single numerical score
using a dedicated aggregation function, and then combined
across different representations to compute the final quality
estimate. In the following section, we describe how the two
main components of the observer are determined, i.e., the
aggregation function S(-) and the set of representations K.

The Aggregation Function. The main goal of the aggrega-
tion function S(+) is to map any intermediate representation
2L of the sample  into a single numerical score. There exist
infinitely many such functions that make evaluating all pos-
sible solutions impossible. Additionally, the choice of the
aggregation function also affects the set of observed repre-



sentations, which makes the combined search space of pos-
sible aggregation functions and sets of representations far
too large to fully explore. For this reason, we hand-craft the
aggregation function S(-) based on several insights about
FR models, presented by prior works [23,26,29,35].

Modern FR models are trained on medium-to-high qual-
ity samples [1 1, 12,23], and so the learned parameters (fil-
ters) respond well to inputs corresponding to images of
higher quality. This means that, generally, the amplitude of
the individual layer’s outputs (intermediate representations)
should be correlated with the quality of the input samples.
Following this insight, we design the aggregation function
around the norm of intermediate values, formally:

S(22) = fpratten(22) 12, ()

where z. is the intermediate representation produced by
the [-th layer of the input sample x, friqeten(-) is a flat-
tening operation and || - ||2 is the Ly norm. Since the
intermediate representation z! can be of arbitrary shape
(dy,ds,...,dp), we first reshape it into a single dimension
with (d1 X da X - -+ x dp) elements, using friqren(-)-

Set of Intermediate Representations C. To determine the
set of layers (representations) C, we propose a simple semi-
supervised approach, which evaluates the usefulness of in-
dividual layers for quality estimation.

Given a calibration set of face images {z;}}Y,, we
compute pseudo-quality labels {q;}~ ;, using an auxil-
iary FIQA approach. Here, any preexisting FIQA technique
could be used. However, to separate the proposed method
from previous works, we devise a custom FIQA approach
based on face-sample perturbations, presented in Sec. 3.4.
For a given FR model M, we investigate the quality infor-
mation of each layer [ € [1, L] within M using:

= p({a 1, {@ ), )

where p(-) is Spearman’s rank correlation, and {g!},
the quality estimates obtained by applying the aggregation
function S(-) on the intermediate representations produced
by the I-th layer. The computed coefficient ¢! shows the
similarity of the ranking of sample qualities provided by
the auxiliary FIQA approach and the intermediate represen-
tation [. A higher correlation coefficient (close to 1) shows
that the two analyzed quality vectors have very similar qual-
ity rankings, indicating that the analyzed intermediate rep-
resentations are suitable for the task of quality assessment.
By evaluating all layers [ € [1, L] in this manner, we obtain
a set of layer correlation coefficients {c!}£_,.

To determine the final set of intermediate layers /C, we
take into account only the best b layers, according to the cor-
relation coefficients {c'}L_, and collect these layers in L.
Since the search space of all possible combinations given
b elements is b! (factorial), we use an approximate greedy
search algorithm limiting the number of combinations to

LQI)'I’. We initialize the set ! to contain only the layer
whose coefficient ¢ is the highest among all layers in L.
At each subsequent step, the layer [, where | € LN ¢ Kn,
which maximizes the join correlation coefficient " 91} is

added to the set K. To compute "1} we use:

n . ACTU{L
KW = p({g N (a P IY), 3)

where K™ U {l} is the union of the set ™ and the single
element set {/}, and {(jic U{l}}fvzl, the set of joint quality

scores of the calibration dataset, computed using:

CmU{l 1 o
{4 W }}ilil = n+1 Z {a] ililv “4)
jekru{l}

where n is the cardinality of /C in the current step. By per-
forming b — 1 steps, we exhaust all elements from £° and
obtain b possible solutions {K"}°_,. The K", with the
highest correlation coefficient K", is selected as the final
set of observed representations /.

3.3. Observer Usage

Once the observer has been initialized, i.e., the aggre-
gation function S(-) and the set of representations K have
been determined, for a given FR model M, the process of
quality assessment is straightforward. During the recogni-
tion process, a sample x is run through the FR model M.
The observer then applies the aggregation function S(-) on
the values of the observed representations z., where [ € K,
and computes the quality score of the input sample x as:

_1 b
4 = T > S, )

kex

where | - | is the cardinality. Thus, the quality score g, is the
average aggregated value of all observed representations.

3.4. Auxiliary FIQA Approach

The proposed FROQ technique relies on a calibration
set of face images and the corresponding pseudo-quality la-
bels. To extract the labels, an auxiliary FIQA technique is
needed. Here, we present a simple new unsupervised FIQA
approach for this task. The auxiliary approach is based on
three different types of face sample perturbations, i.e., hori-
zontal flipping, Gaussian noising, and partial occlusions.

Given a face sample x from the calibration set, we com-
pute the pseudo-quality label ¢, using:

1
¢ = 3(0 +a +a7), (6)
where ¢X", ¢, and ¢€ are the partial quality labels obtained

using horizontal flips, Gaussian noise, and occlusions. The
process to obtain the flip ¢£ and noise ¢’ labels is trivial.
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Figure 3. Performance of the auxiliary FIQA technique. We
compare the performance of the auxiliary FIQA technique against
two unsupervised and two supervised state-of-the-art techniques,
on the XQLFW benchmark using the AdaFace FR model.

Table 1. Comparison of benchmarks datasets. The experiments
are performed using eight commonly used benchmarks, which
vary in size and focus on different aspects of face image quality.

Comparisons Main Focus

Datas Imz 1D 1
ataset mages s Mated Non-mated Pose Age Quality Scale
LFW [19] 13,233 5,749 3,000 3,000 X X X M
Adience [14] 19,370 2,284 20,000 20,000 X X X M
CFP-FP [38] 7,000 500 3,500 3,500 v X X M
CPLFW [44] 11,652 3,930 3,000 3,000 v X X M
CALFW [45] 12,174 4,025 3,000 3,000 X v X M
AgeDB [30] 16,488 570 100,00 100,00 X v X M
XQLFW [24] 13,233 5,749 3,000 3,000 X X v M
1IB-C [28] 23,124% 3,531 19,557 15,638,932 X X X L

M - Medium; L - Large; Values estimated subjectively by the authors.

* number of templates, each containing several images

Using cosine similarity, we compare the features of the orig-
inal and a horizontally flipped or noisy sample, respectively.
We apply noise to the sample according to:

N =(1-a) z+a N,1), (7

where « is a hyperparameter of the approach, and N(0, 1)
is a normally distributed random variable, with a mean of
zero and variance of one. For the occlusion perturbation,
we compute the cosine similarity between the features of
the original  and several occluded samples {7} |. The
sample x, which we assume is square (h equals w), is first
divided into R = (h/0)? non-overlapping squares, where
h is the height of the image and o the desired size of each
square. To construct an occluded sample x°, the o-th non-
overlapping square in the original image is masked by set-
ting all pixels to zero (black). By computing the similarity
for all occluded samples and averaging their scores, we ob-
tain the partial quality label ¢©. The performance of the
proposed auxiliary FIQA technique is shown in Fig. 3.

3.5. Calibration Dataset

Discovering informative intermediate representations of
a given FR model, as described in Sec. 3.2, requires a small
calibration set of face images. To guarantee a fair experi-
mental evaluation, the set of images should not overlap with
any of the benchmarks used in the experiments. Therefore,

Table 2. Comparison of FIQA techniques. We analyze ten meth-
ods, and compare their requirements pre- and during-inference to
the proposed FROQ technique. The unsupervised methods are

marked using BLUE, and the supervised using stripes.
Inference

=

2 -1

‘E —E o = -§ = ‘E
52 €2 TF Bg TLE ¥ g EFg =@
Method 83 25 Z2£ 335 25 £ 28 &% 28
SER-FIQ [40] x v x X 100 0 v x x
FaceQAN [4] X x x X 0 10 v v X
GraFIQs [25] X X X X 1 1 X v X
SDD-FIQA[31] | v x v X 10 v x x
LightQnet [10] v x v v 1o v x X
PCNet [42] v x v x | X x
eDIFFIQAML) [6] | v x v v T x X
CLIB-FIQA [32] | v oo v I x X
MagFace [29] X X v v 1 0 v X X
CR-FIQA [4] X X v v I X X
FROQ v X x X I x v

we construct our calibration set from the popular large-scale
Glint360K [, 2] dataset. To create our subset, we randomly
selected 500 samples from the original dataset. Since the
images in the original dataset are mostly high- to medium-
quality, we further degrade 33% of the images using the
BSRGAN [43] degradation model. This means that the ob-
server initialization step focuses on a wide range of image
qualities when constructing the observed set of intermedi-
ate representations, ensuring good overall performance of
the final quality observer.

4. Experiments & Results
4.1. Experimental Setup

Experimental Setting. We compare the performance of
FROQ to 10 state-of-the-art FIQA techniques i.e.: (%) the
unsupervised SER-FIQ [40], FaceQAN [4], GraFIQs [25]
methods, and (i) the supervised PCNet [42], SDD-
FIQA [31], LightQnet [10], eDifFIQA [6], CLIB-
FIQA [32], MagFace [29] and CR-FIQA [8] methods. All
techniques are summarized in Table 2. We perform exper-
iments using 4 commonly used state-of-the-art FR mod-
els, showing that our method can perform well using any
modern FR model. Specifically we use the CNN-based:
AdaFace® [23], ArcFace® [12], and CurricularFace* [20]
models, as well as the Transformer based SwinFace’® [33]
model. The CNN models all use the ResNet100 back-
bone, while SwinFace uses the Swin Transformer [27]. All
models are trained on the WebFacel2M?, MS1MV3 35,
Glint360k 2, and CASIA-WebFace * datasets. To show that
FROQ can perform well in different scenarios, we repeat the
experiments on 8 different face benchmarks, summarized in

Table 1, i.e.:

CPLFW [

(i) LFW [
], CFP-FP [

], Adience [14], (ii) cross-pose
1, (4i7) cross-age CALFW [45],

zhttpsz
Jhttps:

ps:
4https:
Sht tps:

//github.
//github.
//github.

//github

com/mk-minchul/AdaFace
com/deepinsight/insightface
com/HuangY¥G1l23/CurricularFace

.com/1xql000/SwinFace
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Figure 4. Comparison to the state-of-the-art using EDC curves. The performance of FROQ is compared against ten recent FIQA
techniques, on eight benchmark datasets, using four FR models. The curves present FNMR values at FMR=1e¢ ™3, for different discard
rates. The unsupervised methods use dotted lines, the supervised methods dashed or dashed-dotted lines, and our method a full line.

AgeDB [30], (iv) cross-quality XQLFW [24] and (v) the
large-scale IJB-C [28] benchmark.

Evaluation Methodology. To evaluate the methods, we use
EDC (Error-versus Discard Characteristic) curves and the
pAUC (partial Area Under the Curve) values calculated us-
ing the EDC curves. Both of these are regularly used to

evaluate FIQA techniques [0, 8,29, 36]. The EDC curves
measure the FNMR (False Non-Match Rate) at a given
FMR (False Match Rate), typically 1e — 3, for different dis-
card rates of low-quality images. Overall, the EDC curves
show how the performance of a given FR model improves
when discarding some percentage of the lowest quality im-



ages from the dataset. The pAUC values condense the in-
formation shown by the EDC curves into a single numer-
ical score by calculating the area under the curves up to
some percentage of discarded images, typically set to 20%.
For a more concise and clear presentation, we normalize the
pAUC values using the value calculated at 0% discard rate.

Implementation Details. In the Observer Initialization
step, we use the top b individual layers to construct the final
set KC. To balance the complexity of the search algorithm
and the completeness of the final set, we use b = 10. The
proposed auxiliary FIQA technique uses three separate per-
turbations to produce the pseudo quality scores ¢. For the
noisy component ¢, we use the hyperparameter «, while
for the occlusion component ¢, we use the hyperparameter
0. The parameter o determines the amount of noise added to
each sample. For the sake of quality assessment, the amount
should be minimal, therefore, we set « = 0.001. On the
other hand, o determines the size of the square-structured
occlusions applied to the sample, measured in pixels. For
modern FR models, images are usually resized to 112 x 112
pixels, and we, therefore, choose o = 14, to divide the im-
age into non-overlapping squares. All experiments are con-
ducted on a PC with an Intel i19-10900KF CPU, 64 GB of
RAM, and an Nvidia 3090 GPU. Observer initialization for
a given FR model takes less than five minutes on the pre-
sented PC. For ArcFace, CurricularFace, and SwinFace, the
process selects four and for the AdaFace model, five inter-
mediate representation to be observed during recognition.

4.2. Comparison with the State-of-the-Art

In this section, we compare the experimental results of
FROQ to other state-of-the-art methods, by looking at their:
(i) performance, and (i7) inference runtime.

Performance Analysis. In Fig. 4, we show the compari-
son with state-of-the-art methods using EDC curves, and in
Table 3 the corresponding comparison using the pAUC val-
ues. Following [4-06,32,37], we use a discard rate of 20%
to compute the pAUC values. The results are presented for
all four FR models and all included benchmark datasets.
Observing the results, we see that the proposed FROQ tech-
nique performs well on all benchmark datasets and FR mod-
els. Looking at individual results, FROQ outperforms all
methods on the Adience benchmark regardless of the given
FR model. It achieves excellent (second-best) results on
the XQLFW and the LFW benchmarks, using AdaFace,
ArcFace, and SwinFace models, respectively. While on
the CFP-FP and AgeDB benchmarks, FROQ is competitive
compared to the unsupervised methods, and slightly behind
the average of the state-of-the-art supervised methods. By
observing the pAUC results, which combine the results of
all benchmark datasets, we see that FROQ outperforms the
best unsupervised method, FaceQAN, in all scenarios. The
proposed method performs worse than the three best super-

Table 3. Comparison to the state-of-the-art. The table shows
pAUC scores calculated at a discard rate of 0.2, with FMR set to
1073, over all benchmarks using all four FR models. We mark the
best and second best result of each dataset. The last column shows
average results over all benchmarks, the best average result of the
unsupervised methods is colored BLUE and the best of super-
vised methods is colored GREEN . Unsupervised methods are

marked using BLUE, and supervised using stripes.
AdaFace [23] - pAUC(FMR= le~%)[[]

Methods Adience LFW CPLFW CFP-FP CALFW AgeDB XQLFW 1JB-C | pAUC
SER-FIQ [40] 0.871 0.982  0.775 0.563 0.930 0.809 0.809 0.812 0.819
FaceQAN [4] 0.919 0.797  0.808 0.474 0.945 0.833 0.924 0.800 0.813
GraFIQs [25] 0.932 0.863  0.791 0.893 0.950 0.801 0.846 0.829
PCNet [42] 1.003 0.730 0.914 0.985 0.969 0.826 0.843

SDD-FIQA [31] 0.884 0.857  0.819 0.911 0.796 0.907 0.854

LightQnet [10] 0.890 0.837  0.854 0.925 0.792 0.835 0.846

eDIiFFIQA(L) [6] | 0.889 0.751  0.736 0.490 0.894 0.756 0.759 0.791 0.758
CLIB-FIQA [32] | 0.893 0.762  0.746 0.479 0.897 0.770 0.770 0.807 0.766
MagFace [29] 0.890 0.735  0.805 0.632 0.900 0.760 0.958 0.915 0.824
CR-FIQA [§] 0.890 0.755  0.699 0.504 0.887 0.763 0.833 0.796 0.766
FROQ.pa 0.843 0.754  0.764 0.646 0.925 0.822 0.753 0.798 0.788

ArcFace [12] - pAUC (FMR= 1e~%)[}]

Methods Adience LFW CPLFW CFP-FP CALFW AgeDB XQLFW 1JB-C | pAUC
SER-FIQ [40] 0.840 0.982  0.797 0.539 0.934 0.790 0.828 0.732 0.805
FaceQAN [4] 0.864 0.775  0.826 0.457 0.962 0.835 0.883 0.731 0.792
GraFIQs [25] 0.872 0.863  0.814 0.538 0.902 0.946 0.818 0.786 0.817
PCNet [42] 1.012 0.697 0.810 0.920 0.998 0.965 0.860 0.770 0.879
SDD-FIQA [31] 0.841 0.857  0.829 0.649 0.931 0.801 0.935 0.806 0.831
LightQnet [10] 0.840 0.814  0.862 0.657 0.930 0.797 0.824 0.788 0.814
eDiFFIQA(L) [6] | 0.842 0.751  0.771 0.497 0.904 0.757  0.810 0.729 0.758
CLIB-FIQA [32] | 0.846 0.762  0.778 0.502 0.900 0.762 0.789 0.730 0.759
MagFace [29] 0.852 0.712  0.809 0.634 0.925 0.771 0.960 0.867 0.816
CR-FIQA [5] 0.861 0.732  0.791 0.477 0.912 0.764 0.814 0.724 0.759
FROQ.rc 0.827 0.746  0.796 0.571 0.937 0.837 0.805 0.745 0.783

CurricularFace [20] - pAUC(FMR= le~%)[1]
Methods Adience LFW CPLFW CFP-FP CALFW AgeDB XQLFW IJB-C

SER-FIQ [40] 0.832 0.986  0.764 493 0.926 0.840 0.725
FaceQAN [4] 0.855 0.786  0.804 ¢ 0.931 0.730

GraFIQs [25] 0. 0.8

PCNet [42] 1000 0.732

SDD-FIQA [31] | 0.838  0.865 0812 0556  0.932 0.867 0.809
LightQnet[10] | 0.827  0.834 0.852 0574  0.938 0.855 0.787 | 0.806
eDIFFIQA(L) [6] | 0.831  0.763 0.751  0.448  0.906 0.883 0.721 | 0.755
CLIB-FIQA [32] | 0.834  0.774 0.756  0.446  0.905  0.749 0910 0.733 | 0.763
MagFace [29] 0841 0.736 0792 0.624 0921 0757 0.901 0.875 | 0.806
CR-FIQA [5] 0859  0.746  0.765 0428  0.908 0751 0.901 0.734 | 0.761
FROQcurR 0821 0757 0.757 0531 0922 0.795 0873 0.735 | 0.774

SwinFace [33] - pAUC(FMR= 1e~%)[{]

Methods Adience LFW CPLFW CFP-FP CALFW AgeDB XQLFW 1JB-C | pAUC
SER-FIQ [40] 0.840 1.002  0.801 0.496 0.924 0.799 0.824 0.746 0.804
FaceQAN [4] 0.896 0.796 2 0.441 0.949 0.827 0.934 0.759 0.803
GraFIQs [25] 0.886 0.889 0.500 0.889 0.952 0.791 0.798 0.815
PCNet [42] 0.980 0.716  0.996 0.972 0.962 0.963 0.766 0.789 0.893
SDD-FIQA [31] 0.859 0.871  0.738 0.604 0.908 0.811 0.922 0.816 0.816
LightQnet [10] 0.867 0.837  0.863 0.603 0.914 0.798 0.815 0.799 0.812
eDiFFIQA(L) [6] | 0.856 0771 0.784 0.482 0.897 0.753  0.715 0.743 | 0.750
CLIB-FIQA [32] | 0.861 0.784  0.791 0.494 0.891 0.765 0.741 0.749 0.759
MagFace [29] 0.862 0.732  0.819 0.591 0.894 0.758 0.960 0.881 0.812
CR-FIQA [5] 0.855 0.753  0.801 0.466 0.863 0.766 0.788 0.743 0.754
FROQgsw 1 n 0.802 0.726  0.823 0.525 0.899 0.856 0.828 0.795 0.782

vised methods: eDifFIQA(L), CR-FIQA, and CLIB-FIQA.
Compared to FROQ, all three supervised methods require
substantial computational resources and additional parame-
ters to train their respective quality assessment models.

Runtime Analysis. In Table 4 we show the comparison
with state-of-the-art methods in terms of the inference run-
time. The results measure the mean p and standard devi-
ation o of the inference runtime, for a single image, com-
puted over a set of 10.000 images. To ensure a fair com-
parison, each image was processed individually (batch size
of 1), the experiments were conducted on the same hard-
ware, and the official implementations provided by the au-
thors were used for all methods. The proposed FROQ
method achieves similar runtime performance to other su-
pervised methods, such as CR-FIQA and eDifFIQA(L).
Compared to unsupervised methods, FROQ achieves a far



Table 4. Runtime Complexity of FIQA techniques. The table shows the method’s inference runtime (in ms), for a single image, calculated

over a set of 10.000 images. Unsupervised methods are marked using BLUE, and supervised using stripes.
FIQA Model S ~ ~ 3 f . ~ '
ER-FIQ [10]  FaceQAN [4]  GraFIQs [25] PCNet[12]  SDD-FIQA [31] LightQnet[10] eDifFIQA(L)[6] CLIB-FIQA [32] | MagFace [29] CR-FIQA [¢] FROQ
Runtime (¢ +0) | 118.376 £29.240  352.12313.515  55.698 & 32.328 | 13.913 & 5.542 5.060 £ 1.300 4.929 & 4.615 10.062 £ 1.342 80.346 £53.122 | 8.21940.228 9.381 £0.309 | 11.025 £ 1.261
Table 5. Results of the Ablation Study. We perform several ab- AdaFace ArcFace CurricularFace SwinFace
lation studies, thoroughly investigating the effects of individual > LFW > CPLFW
components on the final experimental result. The table presents the g 10 g
. — 20
pAUC values, calculated at a discard rate of 20%, at FMR= le~2 i i
for the ablation experiments using the AdaFace FR model. E 10
Changes Adience LFW CPLFW CFP-FP CALFW AgeDB XQLFW IJB-C | pAUC -E; %
=07 =07
Baseline 0.843 0.764 0.646  0.925 0822 0.753 0.798 ~ 0.7 U-ff s 0.9 10 A 0.6 " S”-S L0
< eDifFIQA(L) | 0.892 9 0.763 0.634 0.920 0.833 0.777 0.812 Quality Score Quality Score
&' CR-FIQA 0.891 0.760 0.651 0.924 0816 0.771 0.806 N CALFW 5 XQLFW
(T CLIBFIQA | 0892 0789 0763 0634 0920 0833 0777 0812 ] g G
2 TOP-1 0.848 0.773 0.593 0.926 0.844 0.799 0.837 5 40 5 15
O_ TOP-5 0.871 0.773 0.593 0.926 0.844 0.799 0.809 s} =]
2 TOP-10 0.873 0.768 0.593 0.922 0.833 0.785 0.814 i) 210
" wo.BSRGAN | 0851  0.931 0.888 0737 0966 0935 0763 0.814 | E0 7
[} ®
S 2
=07 - =07
A 0.6 0.8 10 A& 0.6 0.8 1.0

better runtime, even against the least computationally com-
plex GraFIQs, which is around five times slower. Unsur-
prisingly, LightQnet, which focuses on having a minimal
computational footprint, is the fastest method. Overall, in
terms of runtime, FROQ resembles supervised techniques,
assessing the quality within a single forward pass, conse-
quently achieving excellent performance.

4.3. Ablation Study

We perform an ablation study to investigate how individ-
ual components of the proposed FROQ technique contribute
to the final performance, i.e., (i) use of specific auxiliary
FIQA techniques, (i¢) use of the greedy search algorithm,
and (7i7) use of the BSRGAN degradation process.

In Table 5, we present the results of the ablation study.
The first row marked with Baseline presents the results
of the FROQ technique; all other rows contain results of
the ablation study, separated into the three groups. First,
marked with FIQA, we present the results of using an al-
ternate auxiliary FIQA technique to produce the pseudo-
quality labels. To replace the base auxiliary FIQA, we chose
the three best-performing state-of-the-art methods: eDif-
FIQA(L), CLIB-FIQA, and CR-FIQA. Using CR-FIQA as
the auxiliary approach yields the best results, while eDif-
FIQA(L) and CLIB-FIQA achieve the same averaged re-
sult. Surprisingly, all three alternate auxiliary FIQA tech-
niques perform worse than our proposed perturbation-based
FIQA approach. Marked with w.o. Opt., we present the re-
sults, where we forgo the greedy search for the set of ob-
served intermediate representations K and instead use the
top-n individual representations, specifically the top 1, 5,
and 10 layers respectively. We observe that by increasing
the number of representations used for the quality assess-
ment task, the results slowly improve, however, they do not
reach the performance achieved by the baseline approach.
Finally, marked with w.o. BSRGAN, we present the results
obtained using only high and medium quality images from
Glint360k, without any additional degradation from BSR-

.Quality Score Quality Séure
Figure 5. Results of the Qualitative Evaluation. We evaluate
the quality score distributions of the presented technique, using

different FR models over four distinct benchmark datasets.

GAN. Here, the performance is significantly worse than that
of the baseline, alluding to the importance of a wider range
of quality values contained in the calibration set.

4.4. Qualitative Evaluation

In this section, we present the results of the qualitative
evaluation of the FROQ technique. In particular, we ana-
lyze the distribution of normalized quality scores produced
by FROQ when using different FR models. We incorporate
all four FR models and four distinct benchmarks, i.e., LFW,
CPLFW, CALFW, and XQLFW, into the analysis presented
in Fig. 5. From the results, differences between FR models
can be easily spotted. While AdaFace, ArcFace, and Cur-
ricularFace achieve similar distributions, SwinFace exhibits
a vastly narrower distribution of quality scores. The discon-
nect between the models is likely a consequence of the un-
derlying architecture, as the three models are CNN-based,
while SwinFace is a Transformer model.

5. Conclusion

In this paper, we introduced FROQ, a semi-supervised
face image quality assessment method that estimates sam-
ple quality from intermediate representations within a face
recognition (FR) model. Using a greedy search, it se-
lects a subset of informative layers for quality estimation.
Extensive experiments on multiple datasets have shown
that FROQ outperforms all competing unsupervised FIQA
methods and performs similarly to the best supervised tech-
niques without requiring specialized training.

Acknowledgments. Supported by ARIS grants P2-0250,
P2-0214, J2-2501 and the Young Researcher Program.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

(14]

X. An, J. Deng, J. Guo, Z. Feng, X. Zhu, Y. Jing, and
L. Tongliang. Killing Two Birds with One Stone: Efficient
and Robust Training of Face Recognition CNNs by Partial
FC. In Proceedings of the CVF/IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2022.

X. An, X. Zhu, Y. Gao, Y. Xiao, Y. Zhao, Z. Feng, L. Wu,
B. Qin, M. Zhang, D. Zhang, and Y. Fu. Partial FC: Training
10 Million Identities on a Single Machine. In Proceedings of
the CVF/IEEE International Conference on Computer Vision
(1CCV) Workshops, 2021.

7. Babnik, D. Naser, and V. Struc. Optimization-Based Im-
provement of Face Image Quality Assessment Techniques.
In Proceedings of the International Workshop on Biometrics
and Forensics (IWBF), pages 1-6, 2023.

7. Babnik, P. Peer, and V. Struc. FaceQAN: Face Image
Quality Assessment through Adversarial Noise Exploration.
In Proceedings of the IAPR International Conference on Pat-
tern Recognition (ICPR), pages 748754, 2022.

7. Babnik, P. Peer, and V. Struc. DifFIQA: Face Image
Quality Assessment Using Denoising Diffusion Probabilis-
tic Models. In Proceedings of the IAPR/IEEE International
Joint Conference on Biometrics (IJBC), pages 1-10, 2023.
7. Babnik, P. Peer, and V. Struc. eDifFIQA: Towards Effi-
cient Face Image Quality Assessment Based on Denoising
Diffusion Probabilistic Models. Transactions on Biometrics,
Behavior, and Identity Science (TBIOM), 2024.

L. Best-Rowden and A. K. Jain. Learning Face Image Qual-
ity from Human Assessments. Transactions on Information
Forensics and Security (TIFS), 13(12):3064-3077, 2018.

E. Boutros, M. Fang, M. Klemt, B. Fu, and N. Damer. CR-
FIQA: Face Image Quality Assessment by Learning Sam-
ple Relative Classifiability. In Proceedings of the CVF/IEEE
International Conference on Computer Vision and Pattern
Recognition (CVPR), 2023.

F. Boutros, V. Struc, J. Fierrez, and N. Damer. Synthetic Data
for Face Recognition: Current State and Future Prospects.
Image and Vision Computing, 135:104688, 2023.

K. Chen, T. Yi, and Q. Lv. LightQNet: Lightweight Deep
Face Quality Assessment for Risk-Controlled Face Recogni-
tion. Signal Processing Letters, 28:1878—1882, 2021.

J. Dan, Y. Liu, H. Xie, J. Deng, H. Xie, X. Xie, and
B. Sun. TransFace: Calibrating Transformer Training for
Face Recognition from a Data-Centric Perspective. In
Proceedings of the CVF/IEEE International Conference on
Computer Vision (ICCV), pages 20642-20653, 2023.

J. Deng, J. Guo, N. Xue, and S. Zafeiriou. Arcface: Ad-
ditive Angular Margin Loss for Deep Face Recognition. In
Proceedings of the CVF/IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), pages
4690-4699, 2019.

H. Du, H. Shi, D. Zeng, X.-P. Zhang, and T. Mei. The
Elements of End-to-End Deep Face recognition: A Survey
of Recent Advances. ACM Computing Surveys (CSUR),
54(10s):1-42, 2022.

E. Eidinger, R. Enbar, and T. Hassner. Age and Gender Es-
timation of Unfiltered Faces. Transactions on Information
Forensics and Security (TIFS), 9(12):2170-2179, 2014.

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

K. Grm, V. Struc, A. Artiges, M. Caron, and H. K. Ekenel.
Strengths and weaknesses of deep learning models for face
recognition against image degradations. [ET Biometrics,
7(1):81-89, 2018.

J. Hernandez-Ortega, J. Fierrez, 1. Serna, and A. Morales.
FaceQgen: Semi-Supervised Deep Learning for Face Image
Quality Assessment. In Proceedings of the IEEE Interna-
tional Conference on Automatic Face and Gesture Recogni-
tion (FG), pages 1-8, 2021.

J. Hernandez-Ortega, J. Galbally, J. Fiérrez, and L. Beslay.
Biometric Quality: Review and Application to Face Recog-
nition with FaceQnet. arXiv preprint arXiv:2006.03298,
2020.

J. Hernandez-Ortega, J. Galbally, J. Fierrez, R. Haraksim,
and L. Beslay. FaceQnet: Quality Assessment for Face
Recognition Based on Deep Learning. In Proceedings of the
IAPR/IEEE International Conference on Biometrics (ICB),
pages 1-8, 2019.

G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller.
Labeled Faces in the Wild: A Database for Studying Face
Recognition in Unconstrained Environments. Technical Re-
port 07-49, University of Massachusetts, Amherst, October
2007.

Y. Huang, Y. Wang, Y. Tai, X. Liu, P. Shen, S. Li, J. Li,
and F. Huang. CurricularFace: Adaptive Curriculum Learn-
ing Loss for Deep Face Recognition. In Proceedings of
the CVF/IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5901-5910, 2020.
ISO/IEC DIS 29794-1, Biometric Sample Quality. Standard,
International Organization for Standardization (ISO), 2022.
J. Jiang and W. Deng. Disentangling Identity and Pose for
Facial Expression Recognition. /IEEE Transactions on Affec-
tive Computing (TAC), 13(4):1868-1878, 2022.

M. Kim, A. K. Jain, and X. Liu. AdaFace: Quality Adap-
tive Margin for Face Recognition. In Proceedings of the
CVF/IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR), pages 18750-18759, 2022.
M. Knoche, S. Hormann, and G. Rigoll. Cross-Quality
LFW: A Database for Analyzing Cross-Resolution Image
Face Recognition in Unconstrained Environments. In Pro-
ceedings of the IEEE International Conference on Automatic
Face and Gesture Recognition (FG), pages 1-5, 2021.

J. N. Kolf, N. Damer, and F. Boutros. GraFIQs: Face Im-
age Quality Assessment Using Gradient Magnitudes. In Pro-
ceedings of the CVF/IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, pages 1490-
1499, 2024.

Q. Li, H. He, H. Lai, T. Cai, Q. Wang, and Q. Gao. Enhanced
Nuclear Norm Based Matrix Regression for Occluded Face
Recognition. Pattern Recognition, 126:108585, 2022.
Z.Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo. Swin Transformer: Hierarchical Vision Transformer
using Shifted Windows. In Proceedings of the CVF/IEEE
International Conference on Computer Vision (ICCV), pages
10012-10022, 2021.

B. Maze, J. Adams, J. A. Duncan, N. Kalka, T. Miller,
C. Otto, A. K. Jain, W. T. Niggel, J. Anderson, J. Cheney,
et al. IARPA Janus Benchmark-C: Face Dataset and Proto-



[29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

(37]

(38]

[39]

(40]

col. In Proceedings of the IAPR/IEEE International Confer-
ence on Biometrics (ICB), pages 158-165, 2018.

Q. Meng, S. Zhao, Z. Huang, and F. Zhou. MagFace: A
Universal Representation for Face Recognition and Qual-
ity Assessment. In Proceedings of the CVF/IEEE Interna-
tional Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 14225-14234, 2021.

S. Moschoglou, A. Papaioannou, C. Sagonas, J. Deng, I. Kot-
sia, and S. Zafeiriou. AgeDB: the First Manually Collected,
in-the-Wild Age Database. In Proceedings of the CVF/IEEE
conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, pages 51-59, 2017.

FE-Z. Ou, X. Chen, R. Zhang, Y. Huang, S. Li, J. Li,
Y. Li, L. Cao, and Y.-G. Wang. SDD-FIQA: Unsupervised
Face Image Quality Assessment with Similarity Distribu-
tion Distance. In Proceedings of the CVF/IEEE Interna-
tional Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 7670-7679, 2021.

F-Z. Ou, C. Li, S. Wang, and S. Kwong. CLIB-FIQA: Face
Image Quality Assessment with Confidence Calibration. In
Proceedings of the CVF/IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 1694-1704,
2024.

L. Qin, M. Wang, C. Deng, K. Wang, X. Chen, J. Hu, and
W. Deng. SwinFace: A Multi-Task Transformer for Face
Recognition, Expression Recognition, Age Estimation and
Attribute Estimation. Transactions on Circuits and Systems
for Video Technology (TCSVT), 34(4):2223-2234, 2023.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, et al.
Learning Transferable Visual Models from Natural Lan-
guage Supervision. In Proceedings of the International Con-
ference on Machine Learning (ICML), pages 8748-8763.
PmLR, 2021.

M. S. E. Saadabadi, S. R. Malakshan, A. Zafari, M. Mostofa,
and N. M. Nasrabadi. A Quality Aware Sample-to-Sample
Comparison for Face Recognition. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), pages 6129-6138, 2023.

T. Schlett, C. Rathgeb, O. Henniger, J. Galbally, J. Fierrez,
and C. Busch. Face Image Quality Assessment: A Litera-
ture Survey. ACM Computing Surveys (CSUR), 54(10s):1-
49, 2022.

T. Schlett, C. Rathgeb, J. Tapia, and C. Busch. Considera-
tions on the Evaluation of Biometric Quality Assessment Al-
gorithms. Transactions on Biometrics, Behavior, and Identity
Science (TBIOM), 6(1):54-67, 2023.

S. Sengupta, J. C. Cheng, C. D. Castillo, V. M. Patel,
R. Chellappa, and D. W. Jacobs. Frontal to Profile Face Ver-
ification in the Wild. In Proceedings of the CVF/IEEE Win-
ter Conference on Applications of Computer Vision (WACV),
2016.

Y. Shi and A. K. Jain. Probabilistic Face Embeddings. In
Proceedings of the CVF/IEEE International Conference on
Computer Vision (ICCV), pages 6902-6911, 2019.

P. Terhorst, J. N. Kolf, N. Damer, F. Kirchbuchner, and
A. Kuijper. SER-FIQ: Unsupervised Estimation of Face Im-
age Quality Based on Stochastic Embedding Robustness. In

(41]

[42]

(43]

(44]

(45]

Proceedings of the CVF/IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), pages
5651-5660, 2020.

P. Terhorst, J. N. Kolf, M. Huber, F. Kirchbuchner, N. Damer,
A. M. Moreno, J. Fierrez, and A. Kuijper. A Comprehensive
Study on Face Recognition Biases Beyond Demographics.
Transactions on Technology and Society (TTS), 3(1):16-30,
2021.

W. Xie, J. Byrne, and A. Zisserman. Inducing Predictive
Uncertainty Estimation for Face Verification. In Proceedings
of the British Machine Vision Conference (BMVC), 2020.

K. Zhang, J. Liang, L. Van Gool, and R. Timofte. Designing
a Practical Degradation Model for Deep Blind Image Super-
Resolution. In Proceedings of the CVF/IEEE International
Conference on Computer Vision (ICCV), pages 4791-4800,
2021.

T. Zheng and W. Deng. Cross-Pose LFW: A Database for
Studying Cross-Pose Face Recognition in Unconstrained En-
vironments. Technical Report 18-01, Beijing University of
Posts and Telecommunications, February 2018.

T. Zheng, W. Deng, and J. Hu. Cross-Age LFW: A Database
for Studying Cross-Age Face Recognition in Unconstrained
Environments. CoRR, abs/1708.08197, 2017.



