# FROQ<sup>1</sup>: Observing Face Recognition Models for Efficient Quality Assessment

Žiga Babnik<sup>1</sup>, Deepak Kumar Jain<sup>2</sup>, Peter Peer<sup>1</sup>, Vitomir Štruc<sup>1</sup>

<sup>1</sup>University of Ljubljana, Ljubljana, Slovenia

<sup>2</sup>Dalian University of Technology, Dalian, China

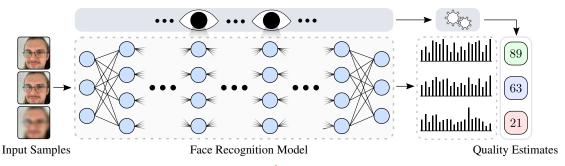



Figure 1. Illustration of the concept behind the proposed FROQ¹ technique. Face Recognition (FR) models condense face samples into feature vectors. In the process, they encode identity-specific information, but also other non-identifying cues, such as face-sample quality [4, 25, 40]. Unsupervised Face Image Quality Assessment (FIQA) techniques can extract quality information directly from FR models, but incur a high computational cost. Supervised techniques are efficient, but typically require extensive training with complex loss functions and dedicated (FIQA) model architectures. FROQ combines the best from both worlds and efficiently estimates face-image quality using only the given FR model, by observing a set of specific, carefully chosen intermediate representations, while avoiding costly training and the reliance on custom FIQA-model architectures.

# Abstract

Face Recognition (FR) plays a crucial role in many critical (high-stakes) applications, where errors in the recognition process can lead to serious consequences. Face Image Quality Assessment (FIQA) techniques enhance FR systems by providing quality estimates of face samples, enabling the systems to discard samples that are unsuitable for reliable recognition or lead to low-confidence recognition decisions. Most state-of-the-art FIQA techniques rely on extensive supervised training to achieve accurate quality estimation. In contrast, unsupervised techniques eliminate the need for additional training but tend to be slower and typically exhibit lower performance. In this paper, we introduce  $FROQ^1$  (Face Recognition Observer of Quality), a semi-supervised, training-free approach that leverages specific intermediate representations within a given FR model to estimate face-image quality, and combines the efficiency of supervised FIQA models with the training-free approach of unsupervised methods. A simple calibration step based on pseudo-quality labels allows FROQ to uncover specific representations, useful for quality assessment, in any modern FR model. To generate these pseudo-labels, we propose a novel unsupervised FIOA technique based on sample perturbations. Comprehensive experiments with four state-of-the-art FR models and eight benchmark datasets show that FROQ leads to highly competitive results compared to the state-of-the-art, achieving both strong performance and efficient runtime, without requiring explicit training. The code for FROQ is available from: https://github.com/LSIbabnikz/FROQ

# 1. Introduction

Face Recognition (FR) is an important research area with numerous real-world applications in security and surveil-lance, border control, police investigations, online banking, and mobile applications, among others [13]. The reliability of FR models in these applications is critical, as errors in the recognition process can compromise user privacy, result in monetary loss, or even lead to legal consequences. While significant advances have been made in FR technology over the years, FR systems still fail to accurately determine identity when deployed in challenging acquisition conditions [9,15,41], where variations in pose, illumination, or other environmental factors cannot be controlled for. To mitigate these issues, FR models often incorporate Face Image Quality Assessment (FIQA) techniques with the goal of assessing the fitness of the input images for recognition.

In accordance with ISO/IEC 29794-1 [21], modern FIQA techniques most often generate a *unified quality score* that corresponds to the utility of the given face sample for the task of recognition. Here, the utility is typically mea-

<sup>&</sup>lt;sup>1</sup> **FROQ** is pronounced as *FROG*.

sured by how likely the sample is to cause false-match errors during the recognition process. In this manner, samples less likely to cause false-match errors are considered to be of higher quality. The quality (or utility) estimates allow FR systems to reject or recapture samples below a certain quality threshold, improving the system's reliability.

Existing FIQA techniques can be broadly categorized into: unsupervised and supervised methods. Unsupervised methods typically estimate sample quality by looking at the behavior of the FR model to perturbations applied to the input face sample [3–5, 40]. Supervised methods, on the other hand, commonly train a quality-regression model, use pseudo-quality labels [10, 31, 42], rely on a specific loss function [6, 23, 29], or external (often generative) proxy tasks [5, 16, 32]. Unlike supervised methods, unsupervised techniques are easily adapted to any target FR model, but they are noticeably slower when assessing quality, as they require several forward or even additional backward passes through the target FR model. Supervised methods are more efficient during inference, but often rely on dedicated model architectures and, hence, require more work to be adapted for a specific target FR model.

In this paper, we present a novel quality assessment technique, called FROO (Face Recognition Observer of Quality), capable of accurately estimating face-sample quality that needs only a single forward pass through the FR model, as shown in Figure 1. The method can be easily adapted to any FR model and requires no supervised training or additional parameters to tune. The main contribution of the approach is the Quality Observer, whose goal is to closely monitor specific intermediate representations produced by the FR model during the recognition process. These representations are used as is to estimate the final quality score for a given input face sample. To discover useful intermediate representations, we present a simple semi-(or weakly) supervised approach, which evaluates the usefulness of individual representations for the task of quality estimation through the use of a small quality-labeled calibration set. In this way, FROQ combines the characteristics of both supervised and unsupervised techniques, achieving excellent runtime, estimating the quality within a single forward pass, without the need for any supervised training or additional FR-model parameters.

#### 2. Related Work

In this section, we provide a brief overview of relevant work on face image quality assessment and discuss both *unsupervised* and *supervised* FIQA techniques. For a more comprehensive coverage of the topic, please see [36].

**Unsupervised Methods.** Unsupervised FIQA methods do not require any supervision when building FIQA models. Instead, they commonly estimate sample quality by observing the effects of various perturbations on the sample's representation within the latent space of the target FR model.

One of the earliest methods, SER-FIO [40], applied dropout to intermediate representations to estimate sample quality. The dropout layer removes certain values from the representation and can be seen as a type of random occlusion on the latent representation. FaceQAN [4] proposed an adversarial attack to predict quality. More specifically, it used the noise applied to the sample during an (adversarial) attack as the perturbation of choice. Recently, DifFIQA [5] introduced a combined approach, using two separate perturbations, encapsulated in the process of modern denoising diffusion probabilistic models (DDPMs). GraFIQs [25] presented a new type of unsupervised FIQA approach, focused on the statistics of the batch normalization layers during the backward pass through the target FR model. A common characteristic of unsupervised FIQA techniques is that they can typically be applied to any modern FR model without additional adjustments. However, they commonly require several forward or even backward passes to estimate quality, making them less computationally efficient.

**Supervised Methods.** Supervised FIQA techniques commonly require training (auxiliary) quality-regression networks or fine-tuning existing face recognition models to estimate face-sample quality and can be further subdivided by whether they need pseudo-quality labels or not.

Methods requiring pseudo-quality labels employ different annotation techniques to obtain the labeled data. The annotated data is then used to train quality regression models. One of the earliest methods in this category, by Best-Rowden and Jain [7], utilizes labels provided by human annotators, while FaceQNet, proposed by Hernandez-Ortega et al. [17, 18], was among the first employing automatically generated pseudo-quality labels, computed by comparing input face samples to the highest-quality images (references) of the same identity. A more robust approach, PCNet [42], used comparisons between several genuine (positive) samples to determine the pseudo labels. SDD-FIQA [31] extended the idea presented by PCNet by also considering information from imposter image pairs. A similar approach was later used in LightQnet [10], with an additional focus on minimizing the parameter count of the final quality extraction model. A quality-label optimization approach, applicable to any set of pseudo-quality labels, was proposed in eDifFIQA [6], leading to highly competitive results. Finally, CLIB-FIQA [32] presented a unique supervised technique that used labels of individual quality factors, such as blur, occlusion, lighting, etc., in combination with the CLIP encoder [34] to train a quality estimation model. While techniques from this group usually achieve good results, they need additional training on pseudo-quality labels and are limited by the expressiveness of the label generation process.

On the other hand, supervised FIQA methods that do not require pseudo-quality labels often use a custom loss function to train a model that can estimate both the feature and

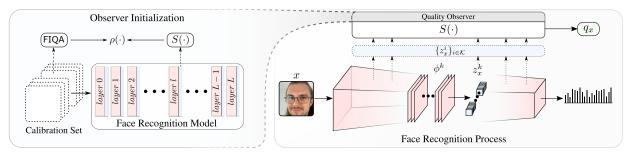



Figure 2. **High-level overview of FROQ.** FROQ estimates sample quality by observing specific intermediate representations produced by the recognition process. The quality score  $q_x$  for a given sample x is computed by applying an aggregation function  $S(\cdot)$  on the values of the observed intermediate representations  $\{z_x^i\}_{i\in\mathcal{K}}$ . The set of intermediate representations  $\mathcal{K}$  observed during the recognition process is determined in the *Observer Initialization* step. Here, each layer of a given FR model is evaluated using a calibration set of images and their corresponding quality scores obtained through an auxiliary FIQA approach, using Spearman's rank correlation  $\rho(\cdot)$ .

quality of a given face sample. For this reason, such methods are also called quality-aware FR methods. One of the earliest such methods, PFE [39], learns a mean and variance vector, corresponding to the feature and quality of the given sample. MagFace [29] proposes an extension of the popular ArcFace [12] loss function, with a magnitude-aware term, enabling the model to encode quality information into the magnitude of the feature vector. A special type of such a method, CR-FIQA [8], uses information encoded in the feature space of a trained model to estimate the quality of samples. Specifically, it uses the Certainty-Ratio, which compares the distances of the given sample to the positive class center and the nearest negative class center.

**Our Contribution.** The proposed FROQ technique leverages pseudo-quality labels; however, unlike supervised methods, the labels are not used to train a quality regressor. Instead, FROQ uses the labels to uncover intermediate representations of the target FR model that are useful for quality assessment. In this process, no new information is encoded into the FR model. For this reason, we categorize FROQ as a semi-supervised technique, combining characteristics of both unsupervised and supervised methods. It can compute the quality scores quickly, using a single forward pass through the FR model, without needing explicit training or limiting the target FR model to a specific loss.

### 3. Methodology

The main goal of FR models is to extract identity information from any given face sample, in the form of a dense identity-information-rich representation called a feature vector. It has been shown that FR models also encode non-identifying information about the samples, such as face pose, expression [22], as well as the quality of the sample [4, 31, 40]. In this section, we now introduce FROQ, a new semi-supervised FIQA approach that requires no training and can accurately predict sample quality using only a single forward pass through the target FR model. To estimate quality, FROQ uses a *Quality Observer*, which tracks values of predetermined intermediate representations of the

given FR model, as shown in Fig. 2. The sample quality is then computed directly from the observed representations using a simple aggregation function. Both the set of observed intermediate representations and the aggregation function are determined in the *Observer Initialization* step.

### 3.1. Overview

Assume a FR model M, which consists of L layers and is parameterized by  $\{\phi^l\}_{l=1}^L$ , where  $\phi^l$  are the parameters of the l-th layer. The goal of FROQ is to extract a quality estimate  $q_x$  of the input face sample x using the predefined Quality Observer. Here, the observer determines the quality  $q_x$  using a single forward pass of the sample x through the recognition network M. It is defined by two dependent components: (i) the aggregation function  $S(\cdot)$ , and (ii) the set of intermediate representations  $\mathcal{K}$ . The role of the aggregation function is to map any intermediate representation  $z^j$  into a single numerical value, where  $z^j \in \{z^l\}_{l=1}^L$  is the intermediate representation produced by the j-th layer of the model M. The set  $\mathcal{K}$  determines which representations will be observed and subsequently used for quality estimation.

### 3.2. Observer Initialization

The quality observer is at the core of the proposed FROQ technique. During inference, it accurately determines the quality of any input sample by simply looking at specific intermediate layers. The values of the intermediate representations are first condensed into a single numerical score using a dedicated aggregation function, and then combined across different representations to compute the final quality estimate. In the following section, we describe how the two main components of the observer are determined, i.e., the aggregation function  $S(\cdot)$  and the set of representations  $\mathcal{K}$ .

The Aggregation Function. The main goal of the aggregation function  $S(\cdot)$  is to map any intermediate representation  $z_x^l$  of the sample x into a single numerical score. There exist infinitely many such functions that make evaluating all possible solutions impossible. Additionally, the choice of the aggregation function also affects the set of observed repre-

sentations, which makes the combined search space of possible aggregation functions and sets of representations far too large to fully explore. For this reason, we hand-craft the aggregation function  $S(\cdot)$  based on several insights about FR models, presented by prior works [23, 26, 29, 35].

Modern FR models are trained on medium-to-high quality samples [11, 12, 23], and so the learned parameters (filters) respond well to inputs corresponding to images of higher quality. This means that, generally, the amplitude of the individual layer's outputs (intermediate representations) should be correlated with the quality of the input samples. Following this insight, we design the aggregation function around the norm of intermediate values, formally:

$$S(z_x^l) = ||f_{flatten}(z_x^l)||_2, \tag{1}$$

where  $z_x^l$  is the intermediate representation produced by the l-th layer of the input sample x,  $f_{flatten}(\cdot)$  is a flattening operation and  $\|\cdot\|_2$  is the  $L_2$  norm. Since the intermediate representation  $z_x^l$  can be of arbitrary shape  $(d_1, d_2, \ldots, d_D)$ , we first reshape it into a single dimension with  $(d_1 \times d_2 \times \cdots \times d_D)$  elements, using  $f_{flatten}(\cdot)$ .

**Set of Intermediate Representations**  $\mathcal{K}$ . To determine the set of layers (representations)  $\mathcal{K}$ , we propose a simple semi-supervised approach, which evaluates the usefulness of individual layers for quality estimation.

Given a calibration set of face images  $\{x_i\}_{i=1}^N$ , we compute pseudo-quality labels  $\{\dot{q}_i\}_{i=1}^N$ , using an auxiliary FIQA approach. Here, any preexisting FIQA technique could be used. However, to separate the proposed method from previous works, we devise a custom FIQA approach based on face-sample perturbations, presented in Sec. 3.4. For a given FR model M, we investigate the quality information of each layer  $l \in [1, L]$  within M using:

$$c^{l} = \rho(\{\dot{q}_{i}\}_{i=1}^{N}, \{\hat{q}_{i}^{l}\}_{i=1}^{N}), \tag{2}$$

where  $\rho(\cdot)$  is Spearman's rank correlation, and  $\{\hat{q}_i^l\}_{i=1}^N$  the quality estimates obtained by applying the aggregation function  $S(\cdot)$  on the intermediate representations produced by the l-th layer. The computed coefficient  $c^l$  shows the similarity of the ranking of sample qualities provided by the auxiliary FIQA approach and the intermediate representation l. A higher correlation coefficient (close to 1) shows that the two analyzed quality vectors have very similar quality rankings, indicating that the analyzed intermediate representations are suitable for the task of quality assessment. By evaluating all layers  $l \in [1, L]$  in this manner, we obtain a set of layer correlation coefficients  $\{c^l\}_{l=1}^L$ .

To determine the final set of intermediate layers  $\mathcal{K}$ , we take into account only the best b layers, according to the correlation coefficients  $\{c^l\}_{l=1}^L$  and collect these layers in  $\mathcal{L}^b$ . Since the search space of all possible combinations given b elements is b! (factorial), we use an approximate greedy search algorithm limiting the number of combinations to

 $\frac{(b+1)\cdot b}{2}.$  We initialize the set  $\mathcal{K}^1$  to contain only the layer whose coefficient  $c^l$  is the highest among all layers in  $\mathcal{L}^b.$  At each subsequent step, the layer l, where  $l\in\mathcal{L}^b\wedge l\notin\mathcal{K}^n,$  which maximizes the join correlation coefficient  $c^{\mathcal{K}^n\cup\{l\}},$  is added to the set  $\mathcal{K}^n.$  To compute  $c^{\mathcal{K}^n\cup\{l\}}$  we use:

$$c^{\mathcal{K}^n \cup \{l\}} = \rho(\{\dot{q}_i\}_{i=1}^N, \{\hat{q}_i^{\mathcal{K}^n \cup \{l\}}\}_{i=1}^N), \tag{3}$$

where  $\mathcal{K}^n \cup \{l\}$  is the union of the set  $\mathcal{K}^n$  and the single element set  $\{l\}$ , and  $\{\hat{q}_i^{\mathcal{K}^n \cup \{l\}}\}_{i=1}^N$ , the set of joint quality scores of the calibration dataset, computed using:

$$\{\hat{q}_i^{\mathcal{K}^n \cup \{l\}}\}_{i=1}^N = \frac{1}{n+1} \sum_{j \in \mathcal{K}^n \cup \{l\}} \{\hat{q}_i^j\}_{i=1}^N, \tag{4}$$

where n is the cardinality of  $\mathcal{K}$  in the current step. By performing b-1 steps, we exhaust all elements from  $\mathcal{L}^b$  and obtain b possible solutions  $\{\mathcal{K}^n\}_{n=1}^b$ . The  $\mathcal{K}^n$ , with the highest correlation coefficient  $c^{\mathcal{K}^n}$ , is selected as the final set of observed representations  $\mathcal{K}$ .

# 3.3. Observer Usage

Once the observer has been initialized, i.e., the aggregation function  $S(\cdot)$  and the set of representations  $\mathcal K$  have been determined, for a given FR model M, the process of quality assessment is straightforward. During the recognition process, a sample x is run through the FR model M. The observer then applies the aggregation function  $S(\cdot)$  on the values of the observed representations  $z_x^l$ , where  $l \in \mathcal K$ , and computes the quality score of the input sample x as:

$$q_x = \frac{1}{|\mathcal{K}|} \sum_{k \in \mathcal{K}} S(z_x^k),\tag{5}$$

where  $|\cdot|$  is the cardinality. Thus, the quality score  $q_x$  is the average aggregated value of all observed representations.

### 3.4. Auxiliary FIQA Approach

The proposed FROQ technique relies on a calibration set of face images and the corresponding pseudo-quality labels. To extract the labels, an auxiliary FIQA technique is needed. Here, we present a simple new unsupervised FIQA approach for this task. The auxiliary approach is based on three different types of face sample perturbations, i.e., horizontal flipping, Gaussian noising, and partial occlusions.

Given a face sample x from the calibration set, we compute the pseudo-quality label  $q_x$  using:

$$q_x = \frac{1}{3}(q_x^F + q_x^N + q_x^O),\tag{6}$$

where  $q_x^F$ ,  $q_x^N$ , and  $q_x^O$  are the partial quality labels obtained using horizontal flips, Gaussian noise, and occlusions. The process to obtain the flip  $q_x^F$  and noise  $q_x^N$  labels is trivial.

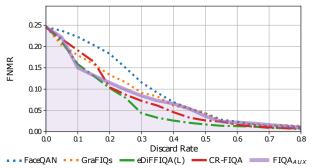



Figure 3. **Performance of the auxiliary FIQA technique.** We compare the performance of the auxiliary FIQA technique against two unsupervised and two supervised state-of-the-art techniques, on the XQLFW benchmark using the AdaFace FR model.

Table 1. **Comparison of benchmarks datasets.** The experiments are performed using eight commonly used benchmarks, which vary in size and focus on different aspects of face image quality.

| Dataset                   | Images                 | IDs           | Con             | iparisons       | N      | - Scale <sup>†</sup> |         |         |
|---------------------------|------------------------|---------------|-----------------|-----------------|--------|----------------------|---------|---------|
| Dataset                   | images                 | IDS           | Mated           | Non-mated       | Pose   | Age                  | Quality | - Scale |
| LFW [19]<br>Adience [14]  | $13,\!233 \\ 19,\!370$ | 5,749 $2,284$ | 3,000<br>20,000 | 3,000<br>20,000 | X<br>X | X<br>X               | X<br>X  | M<br>M  |
| CFP-FP [38]<br>CPLFW [44] | 7,000<br>11,652        | 500<br>3,930  | 3,500<br>3,000  | 3,500<br>3,000  | 1      | ×                    | X<br>X  | M<br>M  |
| CALFW [45]<br>AgeDB [30]  | 12,174<br>16,488       | 4,025<br>570  | 3,000<br>100,00 | 3,000<br>100,00 | ×      | <b>√</b>             | X<br>X  | M<br>M  |
| XQLFW [24]                | 13,233                 | 5,749         | 3,000           | 3,000           | X      | X                    | /       | M       |
| IJB-C [28]                | $23{,}124^{\ddagger}$  | 3,531         | 19,557          | 15,638,932      | Х      | X                    | ×       | L       |

<sup>†</sup>M - Medium; L - Large; Values estimated subjectively by the authors

Using cosine similarity, we compare the features of the original and a horizontally flipped or noisy sample, respectively. We apply noise to the sample according to:

$$x^{N} = (1 - \alpha) \cdot x + \alpha \cdot \mathcal{N}(0, 1), \tag{7}$$

where  $\alpha$  is a hyperparameter of the approach, and  $\mathcal{N}(0,1)$  is a normally distributed random variable, with a mean of zero and variance of one. For the occlusion perturbation, we compute the cosine similarity between the features of the original x and several occluded samples  $\{x^{O_i}\}_{i=1}^R$ . The sample x, which we assume is square (h equals w), is first divided into  $R = (h/o)^2$  non-overlapping squares, where h is the height of the image and o the desired size of each square. To construct an occluded sample  $x^o$ , the o-th non-overlapping square in the original image is masked by setting all pixels to zero (black). By computing the similarity for all occluded samples and averaging their scores, we obtain the partial quality label  $q_x^O$ . The performance of the proposed auxiliary FIQA technique is shown in Fig. 3.

# 3.5. Calibration Dataset

Discovering informative intermediate representations of a given FR model, as described in Sec. 3.2, requires a small calibration set of face images. To guarantee a fair experimental evaluation, the set of images should not overlap with any of the benchmarks used in the experiments. Therefore,

Table 2. **Comparison of FIQA techniques.** We analyze ten methods, and compare their requirements pre- and during-inference to the proposed FROQ technique. The unsupervised methods are marked using BLUE, and the supervised using GREEN stripes.

|                 |                   |                          |                        |                |                  |           | Interen          | ice               |                         |
|-----------------|-------------------|--------------------------|------------------------|----------------|------------------|-----------|------------------|-------------------|-------------------------|
| Method          | Quality<br>Labels | Architecture<br>Specific | Additional<br>Training | Custom<br>Loss | Feed-<br>Forward | Backwards | Feature<br>Level | Gradient<br>Level | Representation<br>Level |
| SER-FIQ [40]    | Х                 | /                        | Х                      | Х              | 100              | 0         | /                | Х                 | Х                       |
| FaceQAN [4]     | Х                 | X                        | X                      | X              | 10               | 10        | /                | 1                 | X                       |
| GraFIQs [25]    | Х                 | X                        | X                      | X              | 1                | 1         | X                | 1                 | X                       |
| SDD-FIQA [31]   | 1                 | Х                        |                        | х              | 1                | 0         |                  | Х                 | Х .                     |
| LightQnet [10]  | 1                 | X                        | /                      | 1              | 1                | 0         | /                | X                 | X                       |
| PCNet [42]      | /                 | Х                        | /                      | Х              | 1                | 0         | /                | Х                 | X                       |
| eDiFFIQA(L) [6] | 1                 | X                        | /                      | 1              | 1                | 0         | /                | X                 | Х                       |
| CLIB-FIQA [32]  | 1                 | 1                        | 1                      | 1              | 1                | 0         | /                | X                 | Х                       |
| MagFace [29]    | X                 | ×                        | /                      | /              | 1                | 0         | /                | ×                 | Х                       |
| CR-FIQA [8]     | Х                 | X                        | 1                      | 1              | 1                | 0         | 1                | X                 | X                       |
| FROQ            | 1                 | Х                        | Х                      | Х              | 1                | 0         | Х                | Х                 | ✓                       |

we construct our calibration set from the popular large-scale Glint360K [1,2] dataset. To create our subset, we randomly selected 500 samples from the original dataset. Since the images in the original dataset are mostly high- to medium-quality, we further degrade 33% of the images using the BSRGAN [43] degradation model. This means that the observer initialization step focuses on a wide range of image qualities when constructing the observed set of intermediate representations, ensuring good overall performance of the final quality observer.

# 4. Experiments & Results

#### 4.1. Experimental Setup

**Experimental Setting.** We compare the performance of FROQ to 10 state-of-the-art FIQA techniques i.e.: (i) the unsupervised SER-FIQ [40], FaceQAN [4], GraFIQs [25] methods, and (ii) the supervised PCNet [42], SDD-FIQA [31], LightQnet [10], eDifFIQA [6], CLIB-FIQA [32], MagFace [29] and CR-FIQA [8] methods. All techniques are summarized in Table 2. We perform experiments using 4 commonly used state-of-the-art FR models, showing that our method can perform well using any modern FR model. Specifically we use the CNN-based: AdaFace<sup>2</sup> [23], ArcFace<sup>3</sup> [12], and CurricularFace<sup>4</sup> [20] models, as well as the Transformer based SwinFace<sup>5</sup> [33] model. The CNN models all use the ResNet100 backbone, while SwinFace uses the Swin Transformer [27]. All models are trained on the WebFace12M<sup>2</sup>, MS1MV3<sup>3,5</sup>. Glint360k<sup>3</sup>, and CASIA-WebFace<sup>4</sup> datasets. To show that FROQ can perform well in different scenarios, we repeat the experiments on 8 different face benchmarks, summarized in Table 1, i.e.: (i) LFW [19], Adience [14], (ii) cross-pose CPLFW [44], CFP-FP [38], (iii) cross-age CALFW [45],

<sup>&</sup>lt;sup>‡</sup> number of templates, each containing several images

 $<sup>^2 \</sup>verb|https://github.com/mk-minchul/AdaFace|$ 

<sup>&</sup>lt;sup>3</sup>https://github.com/deepinsight/insightface

<sup>&</sup>lt;sup>4</sup>https://github.com/HuangYG123/CurricularFace

<sup>5</sup>https://github.com/lxq1000/SwinFace

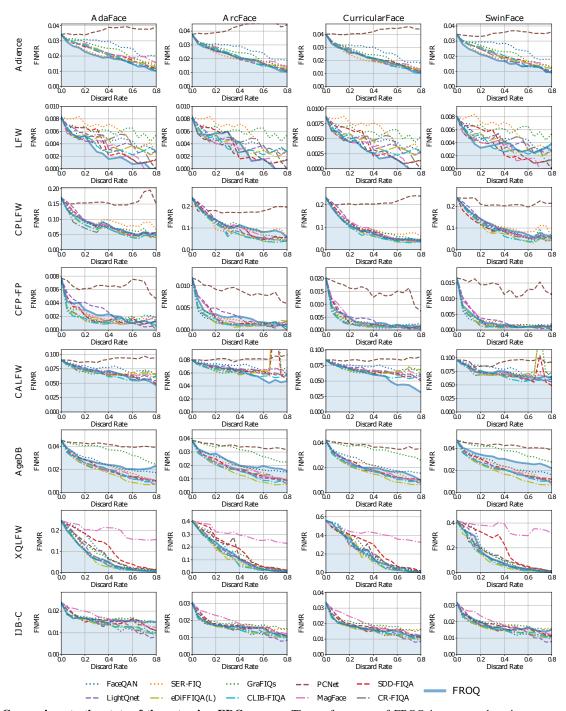



Figure 4. Comparison to the state-of-the-art using EDC curves. The performance of FROQ is compared against ten recent FIQA techniques, on eight benchmark datasets, using four FR models. The curves present FNMR values at FMR= $1e^{-3}$ , for different discard rates. The unsupervised methods use dotted lines, the supervised methods dashed or dashed-dotted lines, and our method a full line.

AgeDB [30], (iv) cross-quality XQLFW [24] and (v) the large-scale IJB-C [28] benchmark.

**Evaluation Methodology.** To evaluate the methods, we use EDC (Error-versus Discard Characteristic) curves and the pAUC (partial Area Under the Curve) values calculated using the EDC curves. Both of these are regularly used to

evaluate FIQA techniques [6, 8, 29, 36]. The EDC curves measure the FNMR (False Non-Match Rate) at a given FMR (False Match Rate), typically 1e-3, for different discard rates of low-quality images. Overall, the EDC curves show how the performance of a given FR model improves when discarding some percentage of the lowest quality im-

ages from the dataset. The pAUC values condense the information shown by the EDC curves into a single numerical score by calculating the area under the curves up to some percentage of discarded images, typically set to 20%. For a more concise and clear presentation, we normalize the pAUC values using the value calculated at 0% discard rate.

**Implementation Details.** In the Observer Initialization step, we use the top b individual layers to construct the final set K. To balance the complexity of the search algorithm and the completeness of the final set, we use b = 10. The proposed auxiliary FIQA technique uses three separate perturbations to produce the pseudo quality scores  $\dot{q}$ . For the noisy component  $q^N$ , we use the hyperparameter  $\alpha$ , while for the occlusion component  $q^{O}$ , we use the hyperparameter o. The parameter  $\alpha$  determines the amount of noise added to each sample. For the sake of quality assessment, the amount should be minimal, therefore, we set  $\alpha = 0.001$ . On the other hand, o determines the size of the square-structured occlusions applied to the sample, measured in pixels. For modern FR models, images are usually resized to  $112 \times 112$ pixels, and we, therefore, choose o = 14, to divide the image into non-overlapping squares. All experiments are conducted on a PC with an Intel i9-10900KF CPU, 64 GB of RAM, and an Nvidia 3090 GPU. Observer initialization for a given FR model takes less than five minutes on the presented PC. For ArcFace, CurricularFace, and SwinFace, the process selects four and for the AdaFace model, five intermediate representation to be observed during recognition.

#### 4.2. Comparison with the State-of-the-Art

In this section, we compare the experimental results of FROQ to other state-of-the-art methods, by looking at their: (i) performance, and (ii) inference runtime.

**Performance Analysis.** In Fig. 4, we show the comparison with state-of-the-art methods using EDC curves, and in Table 3 the corresponding comparison using the pAUC values. Following [4-6, 32, 37], we use a discard rate of 20%to compute the pAUC values. The results are presented for all four FR models and all included benchmark datasets. Observing the results, we see that the proposed FROQ technique performs well on all benchmark datasets and FR models. Looking at individual results, FROQ outperforms all methods on the Adience benchmark regardless of the given FR model. It achieves excellent (second-best) results on the XQLFW and the LFW benchmarks, using AdaFace, ArcFace, and SwinFace models, respectively. While on the CFP-FP and AgeDB benchmarks, FROQ is competitive compared to the unsupervised methods, and slightly behind the average of the state-of-the-art supervised methods. By observing the pAUC results, which combine the results of all benchmark datasets, we see that FROQ outperforms the best unsupervised method, FaceQAN, in all scenarios. The proposed method performs worse than the three best super-

Table 3. Comparison to the state-of-the-art. The table shows pAUC scores calculated at a discard rate of 0.2, with FMR set to  $10^{-3}$ , over all benchmarks using all four FR models. We mark the best and second best result of each dataset. The last column shows average results over all benchmarks, the best average result of the unsupervised methods is colored BLUE and the best of supervised methods is colored GREEN . Unsupervised methods are marked using BLUE, and supervised using GREEN stripes.

| marked using BLUE, and supervised using GREEN stripes. |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                               |                                                                                                                                               |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                       |                                                                                                                                                                                  |                                                                                                                                                                         |                                                                                                                                                       |  |  |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                        | AdaFace [23] - $pAUC(\text{FMR}=1e^{-3})[\downarrow]$                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                               |                                                                                                                                               |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                       |                                                                                                                                                                                  |                                                                                                                                                                         |                                                                                                                                                       |  |  |
|                                                        | Methods                                                                                                                                                                                                                                                                                | Adience                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LFW                                                                                                                                           | CPLFW                                                                                                                                         | CFP-FP                                                                                                                                                                     | CALFW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AgeDB                                                                                                                 | XQLFW                                                                                                                                                                            | IJB-C                                                                                                                                                                   | $\overline{pAUC}$                                                                                                                                     |  |  |
| Z                                                      | SER-FIQ [40]                                                                                                                                                                                                                                                                           | 0.871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.982                                                                                                                                         | 0.775                                                                                                                                         | 0.563                                                                                                                                                                      | 0.930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.809                                                                                                                 | 0.809                                                                                                                                                                            | 0.812                                                                                                                                                                   | 0.819                                                                                                                                                 |  |  |
|                                                        | FaceQAN [4]                                                                                                                                                                                                                                                                            | 0.919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.797                                                                                                                                         | 0.808                                                                                                                                         | 0.474                                                                                                                                                                      | 0.945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.833                                                                                                                 | 0.924                                                                                                                                                                            | 0.800                                                                                                                                                                   | 0.813                                                                                                                                                 |  |  |
|                                                        | GraFIQs [25]                                                                                                                                                                                                                                                                           | 0.932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.863                                                                                                                                         | 0.791                                                                                                                                         | 0.557                                                                                                                                                                      | 0.893                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.950                                                                                                                 | 0.801                                                                                                                                                                            | 0.846                                                                                                                                                                   | 0.829                                                                                                                                                 |  |  |
|                                                        | PCNet [42]                                                                                                                                                                                                                                                                             | 1.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.730                                                                                                                                         | 0.914                                                                                                                                         | 0.893                                                                                                                                                                      | 0.985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.969                                                                                                                 | 0.826                                                                                                                                                                            | 0.843                                                                                                                                                                   | 0.895                                                                                                                                                 |  |  |
|                                                        | SDD-FIQA [31]                                                                                                                                                                                                                                                                          | 0.884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.857                                                                                                                                         | 0.819                                                                                                                                         | 0.632                                                                                                                                                                      | 0.911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.796                                                                                                                 | 0.907                                                                                                                                                                            | 0.854                                                                                                                                                                   | 0.832                                                                                                                                                 |  |  |
|                                                        | LightQnet [10]                                                                                                                                                                                                                                                                         | 0.890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.837                                                                                                                                         | 0.854                                                                                                                                         | 0.711                                                                                                                                                                      | 0.925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.792                                                                                                                 | 0.835                                                                                                                                                                            | 0.846                                                                                                                                                                   | 0.836                                                                                                                                                 |  |  |
|                                                        | eDiFFIQA(L) [6]                                                                                                                                                                                                                                                                        | 0.889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.751                                                                                                                                         | 0.736                                                                                                                                         | 0.490                                                                                                                                                                      | 0.894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.756                                                                                                                 | 0.759                                                                                                                                                                            | 0.791                                                                                                                                                                   | 0.758                                                                                                                                                 |  |  |
|                                                        | CLIB-FIQA [32]<br>MagFace [29]                                                                                                                                                                                                                                                         | 0.893<br>0.890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.762<br>0.735                                                                                                                                | 0.746<br>0.805                                                                                                                                | 0.479<br>0.632                                                                                                                                                             | 0.897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.770<br>0.760                                                                                                        | 0.770<br>0.958                                                                                                                                                                   | 0.807 $0.915$                                                                                                                                                           | 0.766<br>0.824                                                                                                                                        |  |  |
|                                                        | CR-FIQA [8]                                                                                                                                                                                                                                                                            | 0.890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.755                                                                                                                                         | 0.699                                                                                                                                         | 0.504                                                                                                                                                                      | 0.887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.763                                                                                                                 | 0.833                                                                                                                                                                            | 0.796                                                                                                                                                                   | 0.766                                                                                                                                                 |  |  |
| 2                                                      | $FROQ_{ADA}$                                                                                                                                                                                                                                                                           | 0.843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.754                                                                                                                                         | 0.764                                                                                                                                         | 0.646                                                                                                                                                                      | 0.925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.822                                                                                                                 | 0.753                                                                                                                                                                            | 0.798                                                                                                                                                                   | 0.788                                                                                                                                                 |  |  |
|                                                        |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Arc                                                                                                                                           | Face [12] -                                                                                                                                   | pAUC(FMI                                                                                                                                                                   | $R = 1e^{-3})[\downarrow]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                       |                                                                                                                                                                                  |                                                                                                                                                                         |                                                                                                                                                       |  |  |
|                                                        | Methods                                                                                                                                                                                                                                                                                | Adience                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LFW                                                                                                                                           | CPLFW                                                                                                                                         | CFP-FP                                                                                                                                                                     | CALFW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AgeDB                                                                                                                 | XQLFW                                                                                                                                                                            | IJB-C                                                                                                                                                                   | $\overline{pAUC}$                                                                                                                                     |  |  |
| 1                                                      | SER-FIQ [40]                                                                                                                                                                                                                                                                           | 0.840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.982                                                                                                                                         | 0.797                                                                                                                                         | 0.539                                                                                                                                                                      | 0.934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.790                                                                                                                 | 0.828                                                                                                                                                                            | 0.732                                                                                                                                                                   | 0.805                                                                                                                                                 |  |  |
|                                                        | FaceQAN [4]                                                                                                                                                                                                                                                                            | 0.864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.775                                                                                                                                         | 0.826                                                                                                                                         | 0.457                                                                                                                                                                      | 0.962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.835                                                                                                                 | 0.883                                                                                                                                                                            | 0.731                                                                                                                                                                   | 0.792                                                                                                                                                 |  |  |
|                                                        | GraFIQs [25]                                                                                                                                                                                                                                                                           | 0.872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.863                                                                                                                                         | 0.814                                                                                                                                         | 0.538                                                                                                                                                                      | 0.902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.946                                                                                                                 | 0.818                                                                                                                                                                            | 0.786                                                                                                                                                                   | 0.817                                                                                                                                                 |  |  |
|                                                        | PCNet [42]                                                                                                                                                                                                                                                                             | 1.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.697                                                                                                                                         | 0.810                                                                                                                                         | 0.920                                                                                                                                                                      | 0.998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.965                                                                                                                 | 0.860                                                                                                                                                                            | 0.770                                                                                                                                                                   | 0.879                                                                                                                                                 |  |  |
| 7                                                      | SDD-FIQA [31]                                                                                                                                                                                                                                                                          | 0.841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.857                                                                                                                                         | 0.829                                                                                                                                         | 0.649                                                                                                                                                                      | 0.931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.801                                                                                                                 | 0.935                                                                                                                                                                            | 0.806                                                                                                                                                                   | 0.831                                                                                                                                                 |  |  |
|                                                        | LightQnet [10]                                                                                                                                                                                                                                                                         | 0.840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.814                                                                                                                                         | 0.862                                                                                                                                         | 0.657                                                                                                                                                                      | 0.930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.797                                                                                                                 | 0.824                                                                                                                                                                            | 0.788                                                                                                                                                                   | 0.814                                                                                                                                                 |  |  |
|                                                        | eDiFFIQA(L) [6]                                                                                                                                                                                                                                                                        | 0.842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.751                                                                                                                                         | 0.771                                                                                                                                         | 0.497                                                                                                                                                                      | 0.904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.757                                                                                                                 | 0.810                                                                                                                                                                            | 0.729                                                                                                                                                                   | 0.758                                                                                                                                                 |  |  |
| N                                                      | CLIB-FIQA [32]<br>MagFace [29]                                                                                                                                                                                                                                                         | 0.846<br>0.852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.762<br>0.712                                                                                                                                | 0.778<br>0.809                                                                                                                                | 0.502<br>0.634                                                                                                                                                             | 0.900<br>0.925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.762<br>0.771                                                                                                        | 0.789<br>0.960                                                                                                                                                                   | 0.730 $0.867$                                                                                                                                                           | 0.759<br>0.816                                                                                                                                        |  |  |
|                                                        | CR-FIQA [8]                                                                                                                                                                                                                                                                            | 0.861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.732                                                                                                                                         | 0.791                                                                                                                                         | 0.477                                                                                                                                                                      | 0.912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.764                                                                                                                 | 0.814                                                                                                                                                                            | 0.724                                                                                                                                                                   | 0.759                                                                                                                                                 |  |  |
| Z                                                      | FROQ <sub>ARC</sub>                                                                                                                                                                                                                                                                    | 0.827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.746                                                                                                                                         | 0.796                                                                                                                                         | 0.571                                                                                                                                                                      | 0.937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.837                                                                                                                 | 0.805                                                                                                                                                                            | 0.745                                                                                                                                                                   | 0.783                                                                                                                                                 |  |  |
|                                                        |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                               |                                                                                                                                               |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                       |                                                                                                                                                                                  |                                                                                                                                                                         |                                                                                                                                                       |  |  |
|                                                        |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Curricu                                                                                                                                       | ılarFace [20                                                                                                                                  | 1 - pAUC(                                                                                                                                                                  | $FMR = 1e^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .)[T]                                                                                                                 |                                                                                                                                                                                  |                                                                                                                                                                         |                                                                                                                                                       |  |  |
|                                                        | Methods                                                                                                                                                                                                                                                                                | Adience                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Curricu                                                                                                                                       | ılarFace [20                                                                                                                                  | )] - pAUC(                                                                                                                                                                 | FMR= 1e <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )[↓]<br>AgeDB                                                                                                         | XQLFW                                                                                                                                                                            | <b>ІЈВ-</b> С                                                                                                                                                           | $\overline{pAUC}$                                                                                                                                     |  |  |
|                                                        | Methods                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LFW                                                                                                                                           | CPLFW                                                                                                                                         | CFP-FP                                                                                                                                                                     | CALFW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AgeDB                                                                                                                 |                                                                                                                                                                                  |                                                                                                                                                                         | _                                                                                                                                                     |  |  |
|                                                        |                                                                                                                                                                                                                                                                                        | Adience<br>0.832<br>0.855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                               |                                                                                                                                               |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                       | XQLFW<br>0.840<br>0.931                                                                                                                                                          | IJB-C<br>0.725<br>0.730                                                                                                                                                 | pAUC<br>0.795<br>0.793                                                                                                                                |  |  |
|                                                        | Methods<br>SER-FIQ [40]                                                                                                                                                                                                                                                                | 0.832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>LFW</b><br>0.986                                                                                                                           | <b>CPLFW</b> 0.764                                                                                                                            | <b>CFP-FP</b> 0.493                                                                                                                                                        | CALFW<br>0.926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AgeDB<br>0.794                                                                                                        | 0.840                                                                                                                                                                            | 0.725                                                                                                                                                                   | 0.795                                                                                                                                                 |  |  |
|                                                        | Methods<br>SER-FIQ [40]<br>FaceQAN [4]                                                                                                                                                                                                                                                 | 0.832<br>0.855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.986<br>0.786                                                                                                                                | 0.764<br>0.804                                                                                                                                | 0.493<br>0.453                                                                                                                                                             | 0.926<br>0.953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AgeDB<br>0.794<br>0.830                                                                                               | 0.840<br>0.931                                                                                                                                                                   | 0.725<br>0.730                                                                                                                                                          | 0.795<br>0.793                                                                                                                                        |  |  |
|                                                        | Methods<br>SER-FIQ [40]<br>FaceQAN [4]<br>GraFIQs [25]                                                                                                                                                                                                                                 | 0.832<br>0.855<br>0.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.986<br>0.786<br>0.882                                                                                                                       | 0.764<br>0.804<br>0.785                                                                                                                       | 0.493<br>0.453<br>0.477                                                                                                                                                    | 0.926<br>0.953<br>0.906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.794<br>0.830<br>0.950                                                                                               | 0.840<br>0.931<br>0.887                                                                                                                                                          | 0.725<br>0.730<br>0.780                                                                                                                                                 | 0.795<br>0.793<br>0.815                                                                                                                               |  |  |
|                                                        | Methods SER-FIQ [40] FaceQAN [4] GraFIQs [25] PCNet [42] SDD-FIQA [31] LightQnet [10]                                                                                                                                                                                                  | 0.832<br>0.855<br>0.857<br>1.000<br>0.838<br>0.827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.986<br>0.786<br>0.882<br>0.732<br>0.865<br>0.834                                                                                            | 0.764<br>0.804<br>0.785<br>0.902<br>0.812<br>0.852                                                                                            | 0.493<br>0.453<br>0.477<br>0.931<br>0.556<br>0.574                                                                                                                         | 0.926<br>0.953<br>0.906<br>0.993<br>0.932<br>0.938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.794<br>0.830<br>0.950<br>0.969<br>0.793<br>0.783                                                                    | 0.840<br>0.931<br>0.887<br>0.855<br>0.867<br>0.855                                                                                                                               | 0.725<br>0.730<br>0.780<br>0.776<br>0.806<br>0.787                                                                                                                      | 0.795<br>0.793<br>0.815<br>0.895<br>0.809<br>0.806                                                                                                    |  |  |
|                                                        | Methods SER-FIQ [40] FaceQAN [4] GraFIQs [25] PCNet [42] SDD-FIQA [31] LightQnet [10] eDiFFIQA(L) [6]                                                                                                                                                                                  | 0.832<br>0.855<br>0.857<br>1.000<br>0.838<br>0.827<br>0.831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.986<br>0.786<br>0.882<br>0.732<br>0.865<br>0.834<br>0.763                                                                                   | 0.764<br>0.804<br>0.785<br>0.902<br>0.812<br>0.852<br>0.751                                                                                   | 0.493<br>0.453<br>0.477<br>0.931<br>0.556<br>0.574<br>0.448                                                                                                                | 0.926<br>0.953<br>0.906<br>0.993<br>0.932<br>0.938<br>0.906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.794<br>0.830<br>0.950<br>0.969<br>0.793<br>0.783<br>0.740                                                           | 0.840<br>0.931<br>0.887<br>0.855<br>0.867<br>0.855<br>0.883                                                                                                                      | 0.725<br>0.730<br>0.780<br>0.776<br>0.806<br>0.787<br><b>0.721</b>                                                                                                      | 0.795<br>0.793<br>0.815<br>0.895<br>0.809<br>0.806<br>0.755                                                                                           |  |  |
|                                                        | Methods SER-FIQ [40] FaceQAN [4] GraFIQS [25] PCNet [42] SDD-FIQA [31] LightQnet [10] eDiFFIQA(L) [6] CLIB-FIQA [32]                                                                                                                                                                   | 0.832<br>0.855<br>0.857<br>1.000<br>0.838<br>0.827<br>0.831<br>0.834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.986<br>0.786<br>0.882<br>0.732<br>0.865<br>0.834<br>0.763<br>0.774                                                                          | 0.764<br>0.804<br>0.785<br>0.902<br>0.812<br>0.852<br>0.751<br>0.756                                                                          | 0.493<br>0.453<br>0.477<br>0.931<br>0.556<br>0.574<br>0.448<br>0.446                                                                                                       | 0.926<br>0.953<br>0.906<br>0.993<br>0.993<br>0.932<br>0.938<br>0.906<br>0.905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.794<br>0.830<br>0.950<br>0.969<br>0.793<br>0.783<br>0.740<br>0.749                                                  | 0.840<br>0.931<br>0.887<br>0.855<br>0.867<br>0.855<br>0.883<br>0.910                                                                                                             | 0.725<br>0.730<br>0.780<br>0.776<br>0.806<br>0.787<br><b>0.721</b><br>0.733                                                                                             | 0.795<br>0.793<br>0.815<br>0.895<br>0.809<br>0.806<br>0.755<br>0.763                                                                                  |  |  |
|                                                        | Methods SER-FIQ [40] FaceQAN [4] GraFIQs [25] PCNet [42] SDD-FIQA [31] LightQnet [10] eDiFFIQA(L) [6] CLIB-FIQA [32] MagFace [29]                                                                                                                                                      | 0.832<br>0.855<br>0.857<br>1.000<br>0.838<br>0.827<br>0.831<br>0.834<br>0.841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.986<br>0.786<br>0.882<br>0.732<br>0.865<br>0.834<br>0.763<br>0.774<br>0.736                                                                 | 0.764<br>0.804<br>0.785<br>0.902<br>0.812<br>0.852<br>0.751<br>0.756<br>0.792                                                                 | 0.493<br>0.453<br>0.477<br>0.931<br>0.556<br>0.574<br>0.448<br>0.446<br>0.624                                                                                              | CALFW 0.926 0.953 0.906 0.993 0.993 0.932 0.938 0.906 0.905 0.921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.794<br>0.830<br>0.950<br>0.969<br>0.793<br>0.783<br>0.740<br>0.749<br>0.757                                         | 0.840<br>0.931<br>0.887<br>0.855<br>0.867<br>0.855<br>0.883<br>0.910<br>0.901                                                                                                    | 0.725<br>0.730<br>0.780<br>0.780<br>0.776<br>0.806<br>0.787<br><b>0.721</b><br>0.733<br>0.875                                                                           | 0.795<br>0.793<br>0.815<br>0.895<br>0.809<br>0.806<br>0.755<br>0.763<br>0.806                                                                         |  |  |
|                                                        | Methods SER-FIQ [40] FaceQAN [4] GraFIQS [25] PCNet [42] SDD-FIQA [31] LightQnet [10] eDiFFIQA(L) [6] CLIB-FIQA [32] MagFace [29] CR-FIQA [8]                                                                                                                                          | 0.832<br>0.855<br>0.857<br>1.000<br>0.838<br>0.827<br>0.831<br>0.834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.986<br>0.786<br>0.882<br>0.732<br>0.865<br>0.834<br>0.763<br>0.774                                                                          | 0.764<br>0.804<br>0.785<br>0.902<br>0.812<br>0.852<br>0.751<br>0.756                                                                          | 0.493<br>0.453<br>0.477<br>0.931<br>0.556<br>0.574<br>0.448<br>0.446                                                                                                       | 0.926<br>0.953<br>0.906<br>0.993<br>0.993<br>0.932<br>0.938<br>0.906<br>0.905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.794<br>0.830<br>0.950<br>0.969<br>0.793<br>0.783<br>0.740<br>0.749                                                  | 0.840<br>0.931<br>0.887<br>0.855<br>0.867<br>0.855<br>0.883<br>0.910                                                                                                             | 0.725<br>0.730<br>0.780<br>0.776<br>0.806<br>0.787<br><b>0.721</b><br>0.733                                                                                             | 0.795<br>0.793<br>0.815<br>0.895<br>0.809<br>0.806<br>0.755<br>0.763                                                                                  |  |  |
|                                                        | Methods SER-FIQ [40] FaceQAN [4] GraFIQs [25] PCNet [42] SDD-FIQA [31] LightQnet [10] eDiFFIQA(L) [6] CLIB-FIQA [32] MagFace [29]                                                                                                                                                      | 0.832<br>0.855<br>0.857<br>1.000<br>0.838<br>0.827<br>0.831<br>0.834<br>0.841<br>0.859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.986<br>0.786<br>0.882<br>0.732<br>0.865<br>0.834<br>0.763<br>0.774<br>0.736<br>0.746                                                        | CPLFW  0.764 0.804 0.785 0.902 0.812 0.852 0.751 0.756 0.792 0.765 0.757                                                                      | 0.493<br>0.453<br>0.477<br>0.931<br>0.556<br>0.574<br>0.448<br>0.446<br>0.624<br>0.428                                                                                     | CALFW  0.926 0.953 0.906 0.993 0.932 0.938 0.906 0.905 0.901 0.908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AgeDB 0.794 0.830 0.950 0.969 0.793 0.783 0.740 0.757 0.751 0.795                                                     | 0.840<br>0.931<br>0.887<br>0.855<br>0.867<br>0.855<br>0.883<br>0.910<br>0.901                                                                                                    | 0.725<br>0.730<br>0.780<br>0.776<br>0.806<br>0.787<br><b>0.721</b><br>0.733<br>0.875<br>0.734                                                                           | 0.795<br>0.793<br>0.815<br>0.895<br>0.809<br>0.806<br>0.755<br>0.763<br>0.806<br>0.761                                                                |  |  |
|                                                        | Methods SER-FIQ [40] FaceQAN [4] GraFIQS [25] PCNet [42] SDD-FIQA [31] LightQnet [10] eDiFFIQA(L) [6] CLIB-FIQA [32] MagFace [29] CR-FIQA [8]                                                                                                                                          | 0.832<br>0.855<br>0.857<br>1.000<br>0.838<br>0.827<br>0.831<br>0.834<br>0.841<br>0.859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.986<br>0.786<br>0.882<br>0.732<br>0.865<br>0.834<br>0.763<br>0.774<br>0.736<br>0.746                                                        | CPLFW  0.764 0.804 0.785 0.902 0.812 0.852 0.751 0.756 0.792 0.765 0.757                                                                      | 0.493<br>0.453<br>0.477<br>0.931<br>0.556<br>0.574<br>0.448<br>0.446<br>0.624<br>0.428                                                                                     | CALFW 0.926 0.926 0.953 0.996 0.993 0.932 0.938 0.906 0.905 0.921 0.908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AgeDB 0.794 0.830 0.950 0.969 0.793 0.783 0.740 0.757 0.751 0.795                                                     | 0.840<br>0.931<br>0.887<br>0.855<br>0.867<br>0.855<br>0.883<br>0.910<br>0.901                                                                                                    | 0.725<br>0.730<br>0.780<br>0.776<br>0.806<br>0.787<br><b>0.721</b><br>0.733<br>0.875<br>0.734                                                                           | 0.795<br>0.793<br>0.815<br>0.895<br>0.809<br>0.806<br>0.755<br>0.763<br>0.806<br>0.761                                                                |  |  |
|                                                        | Methods SER-FIQ [40] FaceQAN [4] GraFIQs [25] PCNet [42] SDD-FIQA [31] Light[onet [10] eDiFFIQA(L) [6] CLIB-FIQA [32] MagFace [29] CR-FIQA [8] FROQ <sub>CURR</sub>                                                                                                                    | 0.832<br>0.855<br>0.857<br>1.000<br>0.838<br>0.827<br>0.831<br>0.834<br>0.841<br>0.859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.986<br>0.786<br>0.882<br>0.732<br>0.865<br>0.834<br>0.763<br>0.774<br>0.736<br>0.746<br>0.757                                               | 0.764<br>0.804<br>0.785<br>0.902<br>0.812<br>0.852<br>0.751<br>0.796<br>0.792<br>0.765<br>0.757                                               | 0.493<br>0.453<br>0.477<br>0.931<br>0.556<br>0.574<br>0.446<br>0.624<br>0.428<br>0.531<br>pAUC(FM                                                                          | CALFW  0.926 0.953 0.996 0.993 0.932 0.938 0.906 0.905 0.921 0.908  0.922 R= 1e <sup>-3</sup> )[↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AgeDB  0.794 0.830 0.950 0.969 0.793 0.783 0.740 0.749 0.757 0.751                                                    | 0.840<br>0.931<br>0.887<br>0.855<br>0.867<br>0.855<br>0.883<br>0.910<br>0.901<br>0.901                                                                                           | 0.725<br>0.730<br>0.780<br>0.776<br>0.806<br>0.787<br>0.721<br>0.733<br>0.875<br>0.734                                                                                  | 0.795<br>0.793<br>0.815<br>0.895<br>0.806<br>0.755<br>0.763<br>0.806<br>0.761                                                                         |  |  |
|                                                        | Methods SER-FIQ [40] FaceQAN [4] GraFIQs [25] PCNet [42] SDD-FIQA [31] Light[Onet [10] GLIB-FIQA(L) [6] CLIB-FIQA [32] MagFace [29] CR-FIQA [8] FROQ <sub>CURR</sub> Methods SER-FIQ [40] FaceQAN [4]                                                                                  | 0.832<br>0.855<br>0.857<br>1.000<br>0.838<br>0.827<br>0.831<br>0.834<br>0.841<br>0.859<br><b>0.821</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.986<br>0.786<br>0.882<br>0.732<br>0.865<br>0.742<br>0.763<br>0.774<br>0.736<br>0.746<br>0.757<br>Swir<br>LFW<br>1.002<br>0.796              | 0.764 0.804 0.785 0.902 0.812 0.852 0.751 0.792 0.765 0.757  IFace [33] - CPLFW 0.801 0.801 0.801                                             | 0.493<br>0.453<br>0.477<br>0.931<br>0.556<br>0.574<br>0.448<br>0.448<br>0.428<br>0.531<br>pAUC (FM<br>CFP-FP<br>0.496<br>0.441                                             | CALFW 0.926 0.953 0.906 0.953 0.908 0.932 0.938 0.905 0.905 0.921 0.902 $\mathbb{R} = 1e^{-3}$ ] $\downarrow$ CALFW 0.924 0.924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AgeDB 0.794 0.830 0.950 0.969 0.793 0.783 0.784 0.740 0.757 0.751 0.795  AgeDB 0.799 0.827                            | 0.840<br>0.931<br>0.887<br>0.855<br>0.867<br>0.855<br>0.853<br>0.910<br>0.901<br>0.901<br>0.873<br>XQLFW<br>0.824<br>0.934                                                       | 0.725<br>0.730<br>0.780<br>0.776<br>0.806<br>0.787<br><b>0.721</b><br>0.735<br>0.734<br>0.735                                                                           | 0.795<br>0.793<br>0.815<br>0.895<br>0.809<br>0.806<br>0.763<br>0.806<br>0.761<br>0.774<br>0.804<br>0.803                                              |  |  |
|                                                        | Methods SER-FIQ [40] FaceQAN [4] GraFIQs [25] PCNet [42] SDD-FIQA [31] Light]Onet [10] eDiFFIQA(L) [6] CLIB-FIQA [32] MagFace [29] CR-FIQA [8] FROQ_CURR  Methods SER-FIQ [40]                                                                                                         | 0.832<br>0.855<br>0.857<br>1.000<br>0.838<br>0.827<br>0.831<br>0.834<br>0.841<br>0.859<br>0.821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.986<br>0.786<br>0.882<br>0.763<br>0.865<br>0.834<br>0.763<br>0.774<br>0.736<br>0.746<br>0.757<br>Swir<br>LFW                                | CPLFW  0.764 0.804 0.785 0.902 0.812 0.852 0.751 0.792 0.765 0.757  UFace [33]- CPLFW  0.801                                                  | CFP-FP  0.493 0.453 0.477 0.931 0.556 0.574 0.448 0.446 0.624 0.428 0.531 pAUC(FM CFP-FP  0.496                                                                            | CALFW 0.926 0.953 0.906 0.993 0.906 0.993 0.906 0.901 0.908 0.921 0.908 0.922 $R = 1e^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AgeDB  0.794 0.830 0.950 0.969 0.793 0.783 0.740 0.749 0.757 0.751 0.795                                              | 0.840<br>0.931<br>0.887<br>0.855<br>0.867<br>0.855<br>0.868<br>0.910<br>0.901<br>0.901<br>0.873<br>XQLFW                                                                         | 0.725<br>0.730<br>0.780<br>0.776<br>0.806<br>0.787<br>0.721<br>0.733<br>0.875<br>0.734<br>0.735                                                                         | 0.795<br>0.793<br>0.815<br>0.895<br>0.809<br>0.806<br>0.755<br>0.763<br>0.806<br>0.761<br>0.774                                                       |  |  |
|                                                        | Methods SER-FIQ [40] FaceQAN [4] GraFIQs [25] PCNet [42] SDD-FIQA [31] Light[Onet [10] EDIFFIQA(L) [6] CLIB-FIQA [32] MagFace [29] CR-FIQA [8] FROQ_CURR  Methods SER-FIQ [40] FaceQAN [4] FaceQAN [4] FaceQAN [4] FaceQAN [4] FaceQAN [42]                                            | 0.832<br>0.855<br>0.857<br>1.000<br>0.838<br>0.838<br>0.838<br>0.834<br>0.834<br>0.841<br>0.859<br>0.821<br>Adience<br>0.840<br>0.886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.986<br>0.786<br>0.882<br>0.732<br>0.863<br>0.774<br>0.774<br>0.774<br>0.757<br>Swir<br>LFW<br>1.002<br>0.796<br>0.889                       | CPLFW  0.764 0.804 0.785 0.902 0.812 0.852 0.756 0.792 0.765 0.757  IFace [33] - CPLFW 0.801 0.820 0.819 0.996                                | CFP-FP  0.493 0.453 0.477 0.931 0.556 0.574 0.446 0.624 0.428 0.531  pAUC(FM  CFP-FP 0.496 0.446 0.550 0.500                                                               | CALFW 0.926 0.953 0.906 0.993 0.908 0.906 0.908 0.902 $R = 1e^{-3}$ [ $L = 1e^{-3}$ ] $L = 1e^{-3}$ CALFW 0.924 0.924 0.934 0.962 0.962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AgeDB  0.794 0.830 0.950 0.969 0.793 0.783 0.740 0.757 0.751 0.795  AgeDB 0.827 0.952 0.963                           | 0.840<br>0.931<br>0.887<br>0.855<br>0.867<br>0.855<br>0.891<br>0.901<br>0.901<br>0.901<br>0.873<br>XQLFW<br>0.824<br>0.934<br>0.791                                              | 0.725<br>0.730<br>0.780<br>0.776<br>0.806<br>0.787<br>0.721<br>0.733<br>0.875<br>0.734<br>0.735<br>UJB-C<br>0.746<br>0.759<br>0.798                                     | 0.795 0.793 0.815 0.895 0.809 0.806 0.755 0.763 0.806 0.761 0.774   pAUC  0.804 0.803 0.815 0.893                                                     |  |  |
|                                                        | Methods SER-FIQ [40] FaceQAN [4] GraFIQs [25] PCNet [42] SDD-FIQA [31] Light[Onet [10] DIFFIQA(L) [6] CLIB-FIQA [52] MagFace [29] CR-FIQA [8] FROQ <sub>CURR</sub> Methods SER-FIQ [40] FaceQAN [4] GraFIQs [25] PCNet [42] SDD-FIQA [31]                                              | 0.832<br>0.855<br>0.857<br>1.000<br>0.838<br>0.827<br>0.831<br>0.834<br>0.841<br>0.859<br>0.821<br>Adience<br>0.840<br>0.896<br>0.886<br>0.889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.986<br>0.786<br>0.882<br>0.732<br>0.732<br>0.865<br>0.834<br>0.763<br>0.746<br>0.757<br>Swir<br>LFW<br>1.002<br>0.899<br>0.899<br>0.716     | CPLFW  0.764 0.804 0.785 0.992 0.812 0.852 0.756 0.795 0.765 0.765 0.757  IFace [33]- CPLFW 0.801 0.820 0.819 0.996 0.738                     | CFP-FP  0.493 0.453 0.453 0.453 0.556 0.574 0.624 0.428 0.531  pAUC (FM  CFP-FP  0.496 0.441 0.500 0.972 0.604                                                             | CALFW 0.926 0.953 0.906 0.953 0.908 0.908 0.908 0.908 0.908 0.902 $R = 1e^{-3}$ [ $\downarrow$ CALFW 0.924 0.949 0.952 0.962 0.962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AgeDB  0.794 0.830 0.950 0.999 0.793 0.783 0.740 0.757 0.751 0.795  AgeDB  0.799 0.827 0.963 0.811                    | 0.840<br>0.931<br>0.887<br>0.855<br>0.867<br>0.855<br>0.867<br>0.855<br>0.901<br>0.901<br>0.901<br>0.901<br>0.901<br>0.901<br>0.904<br>0.904<br>0.73                             | 0.725<br>0.730<br>0.780<br>0.776<br>0.806<br>0.787<br>0.721<br>0.733<br>0.875<br>0.734<br>0.735<br>UJB-C<br>0.746<br>0.759<br>0.798                                     | 0.795 0.793 0.815 0.895 0.809 0.806 0.765 0.763 0.806 0.761 0.774   PAUC  0.804 0.803 0.815                                                           |  |  |
|                                                        | Methods  SER-FIQ [40] FaceQAN [4] GraFIQS [25] PCNet [42] SDD-FIQA [31] Light/Qnet [10] EDIFFIQA(L) [6] CLIB-FIQA [32] MagFace [29] CR-FIQA [8] FROQCURR  Methods  SER-FIQ [40] FaceQAN [4] FaceQAN [4] FaceQAN [4] FaceQAN [4] SDD-FIQA [31] Light/Qnet [10]                          | 0.832<br>0.855<br>0.857<br>1.000<br>0.838<br>0.827<br>0.831<br>0.834<br>0.841<br>0.859<br>0.821<br>Adience<br>0.840<br>0.896<br>0.896<br>0.896<br>0.867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UFW  0.986 0.786 0.882 0.732 0.865 0.834 0.763 0.7746 0.757  Swir  LFW  1.002 0.796 0.889 0.716 0.871                                         | 0.764 0.804 0.765 0.902 0.812 0.852 0.765 0.792 0.765 0.797  CPLFW 0.801 0.820 0.819 0.996 0.738                                              | 0.493<br>0.453<br>0.453<br>0.556<br>0.574<br>0.931<br>0.556<br>0.448<br>0.446<br>0.624<br>0.428<br>0.531<br>pAUC(FM<br>CFP-FP<br>0.496<br>0.441<br>0.500<br>0.972<br>0.604 | CALFW 0.926 0.953 0.906 0.993 0.932 0.906 0.906 0.905 0.922 $R = 1e^{-3})[\downarrow$ CALFW 0.924 0.949 0.889 0.962 0.908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AgeDB  0.794 0.830 0.950 0.969 0.793 0.783 0.749 0.757 0.751 0.795  AgeDB  0.799 0.827 0.952 0.963 0.811 0.798        | 0.840<br>0.931<br>0.887<br>0.855<br>0.867<br>0.853<br>0.910<br>0.901<br>0.901<br>0.873<br>XQLFW<br>0.824<br>0.934<br>0.791<br>0.796<br>0.922<br>0.815                            | 0.725<br>0.730<br>0.780<br>0.780<br>0.776<br>0.806<br>0.787<br>0.721<br>0.735<br>0.734<br>0.735<br>UJB-C<br>0.746<br>0.759<br>0.798<br>0.816<br>0.799                   | 0.795<br>0.793<br>0.815<br>0.895<br>0.809<br>0.806<br>0.755<br>0.763<br>0.806<br>0.761<br>0.774<br>0.804<br>0.803<br>0.815<br>0.893<br>0.815          |  |  |
|                                                        | Methods SER-FIQ [40] FaceQAN [4] GraFIQs [25] PCNet [42] SDD-FIQA [31] Light[Onet [10] GraFIQA [32] MagFace [29] CR-FIQA [8] FROQ <sub>CURR</sub> Methods SER-FIQ [40] FaceQAN [4] GraFIQs [25] SDD-FIQS [31] Light[Onet [10] SDD-FIQA [31] Light[Onet [10]                            | 0.832<br>0.855<br>0.857<br>1.000<br>0.838<br>0.827<br>0.831<br>0.834<br>0.849<br>0.859<br>0.821<br>Adience<br>0.840<br>0.896<br>0.896<br>0.890<br>0.859<br>0.859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.986 0.786 0.882 0.736 0.882 0.736 0.865 0.834 0.763 0.774 0.736 0.746 0.757  Swir LFW 1.002 0.796 0.889 0.716 0.871 0.871 0.871 0.877 0.771 | CPLFW  0.764 0.804 0.765 0.902 0.812 0.852 0.751 0.792 0.765 0.757  Face [33]- CPLFW 0.819 0.819 0.819 0.819 0.996 0.738                      | CFP-FP  0.493 0.453 0.453 0.574 0.931 0.556 0.574 0.448 0.428 0.531 pAUC(FM  CFP-FP  0.496 0.441 0.500 0.972 0.604 0.604 0.603                                             | CALFW  0.926 0.953 0.906 0.993 0.932 0.906 0.9921 0.992 R= 1e <sup>-3</sup> )[↓ CALFW 0.924 0.949 0.889 0.908 0.908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AgeDB  0.794 0.830 0.950 0.950 0.969 0.793 0.783 0.783 0.785 0.755  AgeDB  0.799 0.827 0.952 0.963 0.811 0.798        | 0.840<br>0.931<br>0.887<br>0.867<br>0.855<br>0.867<br>0.853<br>0.910<br>0.901<br>0.901<br>0.873<br>XQLFW<br>0.824<br>0.934<br>0.791<br>0.766<br>0.922<br>0.815                   | 0.725<br>0.730<br>0.780<br>0.780<br>0.776<br>0.806<br>0.787<br>0.721<br>0.735<br>0.734<br>0.735<br>UJB-C<br>0.746<br>0.759<br>0.798<br>0.798<br>0.799                   | 0.795<br>0.793<br>0.815<br>0.895<br>0.809<br>0.806<br>0.763<br>0.806<br>0.761<br>0.774<br>0.804<br>0.803<br>0.815<br>0.893<br>0.815                   |  |  |
|                                                        | Methods  SER-FIQ [40] FaceQAN [4] GraFIQS [25] PCNet [42] SDD-FIQA [31] Light]Onet [10] eDiFFIQA(L) [6] CLIB-FIQA [32] MagFace [29] CR-FIQA [8] FROQCURR  Methods  SER-FIQ [40] FaceQAN [4] FaceQAN [4] GraFIQS [25] PCNet [42] SDD-FIQA [31] Light]Onet [10] eDiFFIQA(L) [6]          | 0.832<br>0.855<br>0.857<br>1.000<br>0.838<br>0.821<br>0.831<br>0.834<br>0.841<br>0.859<br>0.821<br>Adience<br>0.840<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.867<br>0.867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.986 0.786 0.882 0.732 0.865 0.834 0.774 0.736 0.746 0.757  Swir LFW 1.002 0.796 0.889 0.716 0.871 0.837 0.774                               | CPLFW  0.764 0.804 0.765 0.902 0.812 0.751 0.765 0.792 0.765 0.757  IFace [33] - CPLFW 0.801 0.820 0.819 0.996 0.738 0.863 0.784 0.791        | 0.493<br>0.453<br>0.453<br>0.554<br>0.554<br>0.624<br>0.428<br>0.531<br>pAUC(FM<br>CFP-FP<br>0.496<br>0.441<br>0.500<br>0.972<br>0.603<br>0.494                            | CALFW $0.926$ $0.953$ $0.906$ $0.993$ $0.938$ $0.938$ $0.906$ $0.993$ $0.908$ $0.921$ $0.908$ $0.902$ <b>CALFW</b> $0.924$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ $0.949$ | AgeDB  0.794 0.830 0.950 0.950 0.969 0.793 0.788 0.749 0.757 0.795  AgeDB 0.799 0.827 0.962 0.631 0.798 0.7755        | 0.840<br>0.931<br>0.887<br>0.855<br>0.867<br>0.855<br>0.867<br>0.853<br>0.910<br>0.901<br>0.901<br>0.873<br>XQLFW<br>0.824<br>0.934<br>0.791<br>0.766<br>0.922<br>0.815<br>0.715 | 0.725<br>0.730<br>0.780<br>0.780<br>0.776<br>0.806<br>0.806<br>0.787<br>0.721<br>0.733<br>0.875<br>0.734<br>0.735<br>UJB-C<br>0.746<br>0.759<br>0.799<br>0.799<br>0.799 | 0.795<br>0.793<br>0.815<br>0.895<br>0.806<br>0.755<br>0.763<br>0.806<br>0.761<br>0.774<br>0.804<br>0.803<br>0.815<br>0.893<br>0.815<br>0.893<br>0.815 |  |  |
|                                                        | Methods SER-FIQ [40] FaceQAN [4] GraFIQs [25] PCNet [42] SDD-FIQA [31] Light[Onet [10] GraFIQA [32] MagFace [29] CR-FIQA [8] FROQ <sub>CURR</sub> Methods SER-FIQ [40] FaceQAN [4] GraFIQs [25] SDD-FIQS [31] Light[Onet [10] SDD-FIQA [31] Light[Onet [10]                            | 0.832<br>0.855<br>0.857<br>1.000<br>0.838<br>0.827<br>0.831<br>0.834<br>0.849<br>0.859<br>0.821<br>Adience<br>0.840<br>0.896<br>0.896<br>0.890<br>0.859<br>0.859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.986 0.786 0.882 0.736 0.882 0.736 0.865 0.834 0.763 0.774 0.736 0.746 0.757  Swir LFW 1.002 0.796 0.889 0.716 0.871 0.871 0.871 0.877 0.771 | CPLFW  0.764 0.804 0.765 0.902 0.812 0.852 0.751 0.792 0.765 0.757  Face [33]- CPLFW 0.819 0.819 0.819 0.819 0.996 0.738                      | CFP-FP  0.493 0.453 0.453 0.574 0.931 0.556 0.574 0.448 0.428 0.531 pAUC(FM  CFP-FP  0.496 0.441 0.500 0.972 0.604 0.604 0.603                                             | CALFW  0.926 0.953 0.906 0.993 0.932 0.906 0.9921 0.992 R= 1e <sup>-3</sup> )[↓ CALFW 0.924 0.949 0.889 0.908 0.908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AgeDB  0.794 0.830 0.950 0.950 0.969 0.793 0.783 0.783 0.785 0.795  AgeDB  0.799 0.827 0.952 0.963 0.811 0.798        | 0.840<br>0.931<br>0.887<br>0.867<br>0.855<br>0.867<br>0.853<br>0.910<br>0.901<br>0.901<br>0.873<br>XQLFW<br>0.824<br>0.934<br>0.791<br>0.766<br>0.922<br>0.815                   | 0.725<br>0.730<br>0.780<br>0.780<br>0.776<br>0.806<br>0.787<br>0.721<br>0.735<br>0.734<br>0.735<br>UJB-C<br>0.746<br>0.759<br>0.798<br>0.798<br>0.799                   | 0.795<br>0.793<br>0.815<br>0.895<br>0.809<br>0.806<br>0.763<br>0.806<br>0.761<br>0.774<br>0.804<br>0.803<br>0.815<br>0.893<br>0.815                   |  |  |
|                                                        | Methods SER_FIQ [40] FaceQAN [4] GraFIQs [25] PCNet [42] SDD-FIQA [31] LightQnet [10] DIFFIQA(L) [6] CLIB-FIQA [32] MagFace [29] CR-FIQA [8] FROQ_CURR  Methods SER_FIQ [40] FaceQAN [4] GraFIQs [25] DD-FIQA [31] LightQnet [10] CDLIB-FIQA [32] MagFace [29] CCLIB-FIQA [32] Methods | 0.832<br>0.855<br>0.857<br>1.000<br>0.838<br>0.827<br>1.000<br>0.838<br>0.831<br>0.834<br>0.841<br>0.859<br>0.821<br>Adience<br>0.840<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896<br>0.896 | 0.986 0.786 0.882 0.786 0.882 0.786 0.865 0.834 0.764 0.774 0.736 0.746 0.757  Swir LFW 1.002 0.796 0.889 0.716 0.871 0.837 0.771 0.784 0.732 | CPLFW  0.764 0.804 0.785 0.902 0.812 0.852 0.751 0.756 0.792 0.765 0.757  Face [33] -  CPLFW  0.801 0.820 0.819 0.996 0.738 0.803 0.784 0.791 | CFP-FP  0.493 0.453 0.453 0.457 0.931 0.556 0.574 0.448 0.426 0.531 pAUC(FM  CFP-FP  0.496 0.441 0.500 0.972 0.604 0.603 0.482 0.4991                                      | CALFW 0.926 0.953 0.906 0.993 0.932 0.906 0.991 0.906 0.992 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.897 0.891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AgeDB  0.794 0.830 0.950 0.950 0.793 0.740 0.757 0.751 0.795  AgeDB 0.827 0.963 0.811 0.798 0.763 0.7783 0.763 0.7783 | 0.840 0.931 0.887 0.855 0.867 0.855 0.868 0.901 0.901 0.901 0.901 0.873  XQLFW 0.824 0.934 0.791 0.766 0.922 0.815 0.715 0.741 0.960                                             | 0.725<br>0.730<br>0.780<br>0.786<br>0.806<br>0.787<br>0.721<br>0.733<br>0.875<br>0.734<br>0.735<br>UJB-C<br>0.746<br>0.759<br>0.798<br>0.816<br>0.799<br>0.743<br>0.799 | 0.795 0.793 0.815 0.895 0.806 0.765 0.763 0.806 0.761 0.774   PAUC 0.803 0.815 0.893 0.815 0.893 0.816 0.812 0.750 0.750                              |  |  |

vised methods: eDifFIQA(L), CR-FIQA, and CLIB-FIQA. Compared to FROQ, all three supervised methods require substantial computational resources and additional parameters to train their respective quality assessment models.

Runtime Analysis. In Table 4 we show the comparison with state-of-the-art methods in terms of the inference runtime. The results measure the mean  $\mu$  and standard deviation  $\sigma$  of the inference runtime, for a single image, computed over a set of 10.000 images. To ensure a fair comparison, each image was processed individually (batch size of 1), the experiments were conducted on the same hardware, and the official implementations provided by the authors were used for all methods. The proposed FROQ method achieves similar runtime performance to other supervised methods, such as CR-FIQA and eDifFIQA(L). Compared to unsupervised methods, FROQ achieves a far

Table 4. **Runtime Complexity of FIQA techniques.** The table shows the method's inference runtime (in ms), for a single image, calculated over a set of 10.000 images. Unsupervised methods are marked using BLUE, and supervised using GREEN stripes.

| FIQA Model                   | SER-FIQ [40]         | FaceQAN [4]   | GraFIQs [25]        | PCNet [42]         | SDD-FIQA [31]     | LightQnet [10]    | eDifFIQA(L) [6]    | CLIB-FIQA [32]      | MagFace [29]      | CR-FIQA [8]       | FROQ               |
|------------------------------|----------------------|---------------|---------------------|--------------------|-------------------|-------------------|--------------------|---------------------|-------------------|-------------------|--------------------|
| Runtime ( $\mu \pm \sigma$ ) | $118.376 \pm 29.240$ | 352.12313.515 | $55.698 \pm 32.328$ | $13.913 \pm 5.542$ | $5.060 \pm 1.300$ | $4.929 \pm 4.615$ | $10.062 \pm 1.342$ | $80.346 \pm 53.122$ | $8.219 \pm 0.228$ | $9.381 \pm 0.309$ | $11.025 \pm 1.261$ |

Table 5. **Results of the Ablation Study.** We perform several ablation studies, thoroughly investigating the effects of individual components on the final experimental result. The table presents the pAUC values, calculated at a discard rate of 20%, at FMR=  $1e^{-3}$  for the ablation experiments using the AdaFace FR model.

|      | Changes     | Adience | LFW   | CPLFW | CFP-FP | CALFW | AgeDB | XQLFW | IJB-C | $\overline{pAUC}$ |
|------|-------------|---------|-------|-------|--------|-------|-------|-------|-------|-------------------|
|      | Baseline    | 0.843   | 0.754 | 0.764 | 0.646  | 0.925 | 0.822 | 0.753 | 0.798 | 0.788             |
| FIQA | eDifFIQA(L) | 0.892   | 0.789 | 0.763 | 0.634  | 0.920 | 0.833 | 0.777 | 0.812 | 0.803             |
|      | CR-FIQA     | 0.891   | 0.754 | 0.760 | 0.651  | 0.924 | 0.816 | 0.771 | 0.806 | 0.797             |
| 17.  | CLIB-FIQA   | 0.892   | 0.789 | 0.763 | 0.634  | 0.920 | 0.833 | 0.777 | 0.812 | 0.803             |
| Opt. | TOP-1       | 0.848   | 0.801 | 0.773 | 0.593  | 0.926 | 0.844 | 0.799 | 0.837 | 0.803             |
|      | TOP-5       | 0.871   | 0.769 | 0.773 | 0.593  | 0.926 | 0.844 | 0.799 | 0.809 | 0.798             |
| 0.8  | TOP-10      | 0.873   | 0.777 | 0.768 | 0.593  | 0.922 | 0.833 | 0.785 | 0.814 | 0.796             |
| w.   | o. BSRGAN   | 0.851   | 0.931 | 0.888 | 0.737  | 0.966 | 0.935 | 0.763 | 0.814 | 0.861             |

better runtime, even against the least computationally complex GraFIQs, which is around five times slower. Unsurprisingly, LightQnet, which focuses on having a minimal computational footprint, is the fastest method. Overall, in terms of runtime, FROQ resembles supervised techniques, assessing the quality within a single forward pass, consequently achieving excellent performance.

# 4.3. Ablation Study

We perform an ablation study to investigate how individual components of the proposed FROQ technique contribute to the final performance, i.e., (i) use of specific auxiliary FIQA techniques, (ii) use of the greedy search algorithm, and (iii) use of the BSRGAN degradation process.

In Table 5, we present the results of the ablation study. The first row marked with Baseline presents the results of the FROQ technique; all other rows contain results of the ablation study, separated into the three groups. First, marked with FIQA, we present the results of using an alternate auxiliary FIQA technique to produce the pseudoquality labels. To replace the base auxiliary FIQA, we chose the three best-performing state-of-the-art methods: eDif-FIQA(L), CLIB-FIQA, and CR-FIQA. Using CR-FIQA as the auxiliary approach yields the best results, while eDif-FIQA(L) and CLIB-FIQA achieve the same averaged result. Surprisingly, all three alternate auxiliary FIQA techniques perform worse than our proposed perturbation-based FIQA approach. Marked with w.o. Opt., we present the results, where we forgo the greedy search for the set of observed intermediate representations  $\mathcal K$  and instead use the top-n individual representations, specifically the top 1, 5, and 10 layers respectively. We observe that by increasing the number of representations used for the quality assessment task, the results slowly improve, however, they do not reach the performance achieved by the baseline approach. Finally, marked with w.o. BSRGAN, we present the results obtained using only high and medium quality images from Glint360k, without any additional degradation from BSR-

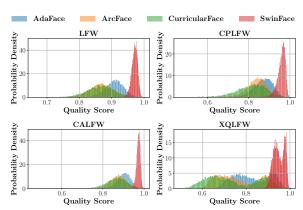



Figure 5. **Results of the Qualitative Evaluation.** We evaluate the quality score distributions of the presented technique, using different FR models over four distinct benchmark datasets.

GAN. Here, the performance is significantly worse than that of the baseline, alluding to the importance of a wider range of quality values contained in the calibration set.

### 4.4. Qualitative Evaluation

In this section, we present the results of the qualitative evaluation of the FROQ technique. In particular, we analyze the distribution of normalized quality scores produced by FROQ when using different FR models. We incorporate all four FR models and four distinct benchmarks, i.e., LFW, CPLFW, CALFW, and XQLFW, into the analysis presented in Fig. 5. From the results, differences between FR models can be easily spotted. While AdaFace, ArcFace, and CurricularFace achieve similar distributions, SwinFace exhibits a vastly narrower distribution of quality scores. The disconnect between the models is likely a consequence of the underlying architecture, as the three models are CNN-based, while SwinFace is a Transformer model.

#### 5. Conclusion

In this paper, we introduced FROQ, a semi-supervised face image quality assessment method that estimates sample quality from intermediate representations within a face recognition (FR) model. Using a greedy search, it selects a subset of informative layers for quality estimation. Extensive experiments on multiple datasets have shown that FROQ outperforms all competing unsupervised FIQA methods and performs similarly to the best supervised techniques without requiring specialized training.

**Acknowledgments.** Supported by ARIS grants P2-0250, P2-0214, J2-2501 and the Young Researcher Program.

### References

- [1] X. An, J. Deng, J. Guo, Z. Feng, X. Zhu, Y. Jing, and L. Tongliang. Killing Two Birds with One Stone: Efficient and Robust Training of Face Recognition CNNs by Partial FC. In Proceedings of the CVF/IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
- [2] X. An, X. Zhu, Y. Gao, Y. Xiao, Y. Zhao, Z. Feng, L. Wu, B. Qin, M. Zhang, D. Zhang, and Y. Fu. Partial FC: Training 10 Million Identities on a Single Machine. In *Proceedings of the CVF/IEEE International Conference on Computer Vision (ICCV) Workshops*, 2021.
- [3] Ž. Babnik, D. Naser, and V. Štruc. Optimization-Based Improvement of Face Image Quality Assessment Techniques. In *Proceedings of the International Workshop on Biometrics and Forensics (IWBF)*, pages 1–6, 2023.
- [4] Ž. Babnik, P. Peer, and V. Štruc. FaceQAN: Face Image Quality Assessment through Adversarial Noise Exploration. In *Proceedings of the IAPR International Conference on Pattern Recognition (ICPR)*, pages 748–754, 2022.
- [5] Ž. Babnik, P. Peer, and V. Štruc. DifFIQA: Face Image Quality Assessment Using Denoising Diffusion Probabilistic Models. In *Proceedings of the IAPR/IEEE International Joint Conference on Biometrics (IJBC)*, pages 1–10, 2023.
- [6] Ž. Babnik, P. Peer, and V. Štruc. eDifFIQA: Towards Efficient Face Image Quality Assessment Based on Denoising Diffusion Probabilistic Models. *Transactions on Biometrics, Behavior, and Identity Science (TBIOM)*, 2024.
- [7] L. Best-Rowden and A. K. Jain. Learning Face Image Quality from Human Assessments. *Transactions on Information Forensics and Security (TIFS)*, 13(12):3064–3077, 2018.
- [8] F. Boutros, M. Fang, M. Klemt, B. Fu, and N. Damer. CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability. In Proceedings of the CVF/IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2023.
- [9] F. Boutros, V. Struc, J. Fierrez, and N. Damer. Synthetic Data for Face Recognition: Current State and Future Prospects. *Image and Vision Computing*, 135:104688, 2023.
- [10] K. Chen, T. Yi, and Q. Lv. LightQNet: Lightweight Deep Face Quality Assessment for Risk-Controlled Face Recognition. Signal Processing Letters, 28:1878–1882, 2021.
- [11] J. Dan, Y. Liu, H. Xie, J. Deng, H. Xie, X. Xie, and B. Sun. TransFace: Calibrating Transformer Training for Face Recognition from a Data-Centric Perspective. In *Proceedings of the CVF/IEEE International Conference on Computer Vision (ICCV)*, pages 20642–20653, 2023.
- [12] J. Deng, J. Guo, N. Xue, and S. Zafeiriou. Arcface: Additive Angular Margin Loss for Deep Face Recognition. In Proceedings of the CVF/IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pages 4690–4699, 2019.
- [13] H. Du, H. Shi, D. Zeng, X.-P. Zhang, and T. Mei. The Elements of End-to-End Deep Face recognition: A Survey of Recent Advances. ACM Computing Surveys (CSUR), 54(10s):1–42, 2022.
- [14] E. Eidinger, R. Enbar, and T. Hassner. Age and Gender Estimation of Unfiltered Faces. *Transactions on Information Forensics and Security (TIFS)*, 9(12):2170–2179, 2014.

- [15] K. Grm, V. Štruc, A. Artiges, M. Caron, and H. K. Ekenel. Strengths and weaknesses of deep learning models for face recognition against image degradations. *IET Biometrics*, 7(1):81–89, 2018.
- [16] J. Hernandez-Ortega, J. Fierrez, I. Serna, and A. Morales. FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment. In *Proceedings of the IEEE Interna*tional Conference on Automatic Face and Gesture Recognition (FG), pages 1–8, 2021.
- [17] J. Hernandez-Ortega, J. Galbally, J. Fiérrez, and L. Beslay. Biometric Quality: Review and Application to Face Recognition with FaceQnet. arXiv preprint arXiv:2006.03298, 2020.
- [18] J. Hernandez-Ortega, J. Galbally, J. Fierrez, R. Haraksim, and L. Beslay. FaceQnet: Quality Assessment for Face Recognition Based on Deep Learning. In *Proceedings of the IAPR/IEEE International Conference on Biometrics (ICB)*, pages 1–8, 2019.
- [19] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. Technical Report 07-49, University of Massachusetts, Amherst, October 2007.
- [20] Y. Huang, Y. Wang, Y. Tai, X. Liu, P. Shen, S. Li, J. Li, and F. Huang. CurricularFace: Adaptive Curriculum Learning Loss for Deep Face Recognition. In *Proceedings of the CVF/IEEE International Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 5901–5910, 2020.
- [21] ISO/IEC DIS 29794-1, Biometric Sample Quality. Standard, International Organization for Standardization (ISO), 2022.
- [22] J. Jiang and W. Deng. Disentangling Identity and Pose for Facial Expression Recognition. *IEEE Transactions on Affec*tive Computing (TAC), 13(4):1868–1878, 2022.
- [23] M. Kim, A. K. Jain, and X. Liu. AdaFace: Quality Adaptive Margin for Face Recognition. In *Proceedings of the CVF/IEEE International Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 18750–18759, 2022.
- [24] M. Knoche, S. Hormann, and G. Rigoll. Cross-Quality LFW: A Database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments. In *Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition (FG)*, pages 1–5, 2021.
- [25] J. N. Kolf, N. Damer, and F. Boutros. GraFIQs: Face Image Quality Assessment Using Gradient Magnitudes. In Proceedings of the CVF/IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pages 1490–1499, 2024.
- [26] Q. Li, H. He, H. Lai, T. Cai, Q. Wang, and Q. Gao. Enhanced Nuclear Norm Based Matrix Regression for Occluded Face Recognition. *Pattern Recognition*, 126:108585, 2022.
- [27] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In *Proceedings of the CVF/IEEE International Conference on Computer Vision (ICCV)*, pages 10012–10022, 2021.
- [28] B. Maze, J. Adams, J. A. Duncan, N. Kalka, T. Miller, C. Otto, A. K. Jain, W. T. Niggel, J. Anderson, J. Cheney, et al. IARPA Janus Benchmark-C: Face Dataset and Proto-

- col. In *Proceedings of the IAPR/IEEE International Conference on Biometrics (ICB)*, pages 158–165, 2018.
- [29] Q. Meng, S. Zhao, Z. Huang, and F. Zhou. MagFace: A Universal Representation for Face Recognition and Quality Assessment. In Proceedings of the CVF/IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pages 14225–14234, 2021.
- [30] S. Moschoglou, A. Papaioannou, C. Sagonas, J. Deng, I. Kotsia, and S. Zafeiriou. AgeDB: the First Manually Collected, in-the-Wild Age Database. In *Proceedings of the CVF/IEEE conference on Computer Vision and Pattern Recognition (CVPR) Workshops*, pages 51–59, 2017.
- [31] F.-Z. Ou, X. Chen, R. Zhang, Y. Huang, S. Li, J. Li, Y. Li, L. Cao, and Y.-G. Wang. SDD-FIQA: Unsupervised Face Image Quality Assessment with Similarity Distribution Distance. In *Proceedings of the CVF/IEEE International Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 7670–7679, 2021.
- [32] F.-Z. Ou, C. Li, S. Wang, and S. Kwong. CLIB-FIQA: Face Image Quality Assessment with Confidence Calibration. In Proceedings of the CVF/IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1694–1704, 2024.
- [33] L. Qin, M. Wang, C. Deng, K. Wang, X. Chen, J. Hu, and W. Deng. SwinFace: A Multi-Task Transformer for Face Recognition, Expression Recognition, Age Estimation and Attribute Estimation. *Transactions on Circuits and Systems* for Video Technology (TCSVT), 34(4):2223–2234, 2023.
- [34] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, et al. Learning Transferable Visual Models from Natural Language Supervision. In *Proceedings of the International Con*ference on Machine Learning (ICML), pages 8748–8763. PmLR, 2021.
- [35] M. S. E. Saadabadi, S. R. Malakshan, A. Zafari, M. Mostofa, and N. M. Nasrabadi. A Quality Aware Sample-to-Sample Comparison for Face Recognition. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, pages 6129–6138, 2023.
- [36] T. Schlett, C. Rathgeb, O. Henniger, J. Galbally, J. Fierrez, and C. Busch. Face Image Quality Assessment: A Literature Survey. ACM Computing Surveys (CSUR), 54(10s):1– 49, 2022.
- [37] T. Schlett, C. Rathgeb, J. Tapia, and C. Busch. Considerations on the Evaluation of Biometric Quality Assessment Algorithms. *Transactions on Biometrics, Behavior, and Identity Science (TBIOM)*, 6(1):54–67, 2023.
- [38] S. Sengupta, J. C. Cheng, C. D. Castillo, V. M. Patel, R. Chellappa, and D. W. Jacobs. Frontal to Profile Face Verification in the Wild. In *Proceedings of the CVF/IEEE Win*ter Conference on Applications of Computer Vision (WACV), 2016.
- [39] Y. Shi and A. K. Jain. Probabilistic Face Embeddings. In *Proceedings of the CVF/IEEE International Conference on Computer Vision (ICCV)*, pages 6902–6911, 2019.
- [40] P. Terhorst, J. N. Kolf, N. Damer, F. Kirchbuchner, and A. Kuijper. SER-FIQ: Unsupervised Estimation of Face Image Quality Based on Stochastic Embedding Robustness. In

- Proceedings of the CVF/IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pages 5651–5660, 2020.
- [41] P. Terhörst, J. N. Kolf, M. Huber, F. Kirchbuchner, N. Damer, A. M. Moreno, J. Fierrez, and A. Kuijper. A Comprehensive Study on Face Recognition Biases Beyond Demographics. *Transactions on Technology and Society (TTS)*, 3(1):16–30, 2021.
- [42] W. Xie, J. Byrne, and A. Zisserman. Inducing Predictive Uncertainty Estimation for Face Verification. In *Proceedings* of the British Machine Vision Conference (BMVC), 2020.
- [43] K. Zhang, J. Liang, L. Van Gool, and R. Timofte. Designing a Practical Degradation Model for Deep Blind Image Super-Resolution. In *Proceedings of the CVF/IEEE International Conference on Computer Vision (ICCV)*, pages 4791–4800, 2021
- [44] T. Zheng and W. Deng. Cross-Pose LFW: A Database for Studying Cross-Pose Face Recognition in Unconstrained Environments. Technical Report 18-01, Beijing University of Posts and Telecommunications, February 2018.
- [45] T. Zheng, W. Deng, and J. Hu. Cross-Age LFW: A Database for Studying Cross-Age Face Recognition in Unconstrained Environments. *CoRR*, abs/1708.08197, 2017.