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Abstract
This paper presents a summary of the 2025 Sclera Seg-

mentation Benchmarking Competition (SSBC), which fo-
cused on the development of privacy-preserving sclera-
segmentation models trained using synthetically generated
ocular images. The goal of the competition was to evaluate
how well models trained on synthetic data perform in com-
parison to those trained on real-world datasets. The compe-
tition featured two tracks: (i) one relying solely on synthetic
data for model development, and (ii) one combining/mixing
synthetic with (a limited amount of) real-world data. A
total of nine research groups submitted diverse segmenta-
tion models, employing a variety of architectural designs,
including transformer-based solutions, lightweight models,
and segmentation networks guided by generative frame-
works. Experiments were conducted across three evalua-
tion datasets containing both synthetic and real-world im-
ages, collected under diverse conditions. Results show that
models trained entirely on synthetic data can achieve com-
petitive performance, particularly when dedicated training
strategies are employed, as evidenced by the top performing
models that achieved F1 scores of over 0.8 in the synthetic
data track. Moreover, performance gains in the mixed track
were often driven more by methodological choices rather
than by the inclusion of real data, highlighting the promise
of synthetic data for privacy-aware biometric development.
The code and data for the competition is available at:
https://github.com/dariant/SSBC_2025.

1. Introduction
Ocular biometrics represent a popular branch of research

that focuses on computer-aided techniques, capable of infer-
ring the identity of individuals based on distinctive ocular
traits. While iris recognition has historically dominated this
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Figure 1. Overview of SSBC 2025. The competition entailed two
tracks, where sclera segmentation models were trained on (i) syn-
thetic data and (ii) a mix of synthetic and real data. Models were
evaluated on sequestered real and synthetic datasets. Participants
were required to submit binary and probabilistic predictions.

field, recent research is increasingly looking into other oc-
ular characteristics that can either complement or substitute
the iris. Among these, the sclera, the white region of the eye,
has emerged as a promising candidate due to its distinctive-
ness, long-term consistency, and resistance to presentation
attacks [12,46,59]. Unlike the iris, the sclera is less suscep-
tible to degradations from common visual conditions and
can be imaged under normal lighting with standard cameras,
making it especially practical for real-world applications.

Research into sclera biometrics has intensified in recent
years, covering a wide range of topics including recogni-
tion algorithms [2,10,15,20,21,43,59,60,65], segmentation

https://github.com/dariant/SSBC_2025


methods [1, 41, 46, 56, 57], detection of presentation attacks
[15, 46, 59], adaptability to user variability [8, 11], fusion
techniques [17, 26], and lightweight methods [25, 56, 60].
However, with research in this area generally moving to-
wards data-hungry deep learning models, a key issue that
has arisen is privacy preservation, since large-scale datasets
of ocular images compiled with privacy-protecting mea-
sures in mind are largely unavailable. A possible solu-
tion to this issue is the use of synthetically generated data
[9, 51–54], which maintains the characteristics required to
develop biometric models, but does not belong to (or con-
tain identifying information about) real-world individuals
and is, thus, not open to abuse or breach of privacy.

To investigate the effectiveness of synthetic data for
sclera biometrics, the 2025 Sclera Segmentation Bench-
marking Competition (SSBC), summarized in Fig. 1, was
organized in the scope of the International Joint Conference
on Biometrics (IJCB 2025). The competition focused on
sclera segmentation, which is a crucial step in any sclera
recognition pipeline, as the segmentation quality directly
impacts all subsequent stages, including normalization, fea-
ture extraction, and identity matching. The competition
aimed at answering key research questions, such as: How
well does synthetic data mimic real-world datasets? What
effect does the use of synthetic training data have on seg-
mentation performance? What techniques can be used to
adapt models to the use of synthetically generated images
during training? Nine segmentation models submitted by
visible research teams from around the world were eval-
uated to provide insights into these and related questions.
The joint effort of the organizers and the participating teams
resulted in the following contributions:

• A comprehensive evaluation of contemporary sclera
segmentation models on real-world and synthetically
generated evaluation data.

• A differential performance analysis, studying the im-
pact of the use of synthetic and real-world training data
in model development.

• A study of the impact of model size and computational
complexity on the final segmentation performance and
on the model’s adaptability to synthetic training data.

2. Related Work
SSBC 2025 is the 9th iteration of the sclera segmentation

benchmarking competition, originally started at the BTAS
conference in 2015. The SSBC series of competitions has
significantly pushed forward the development of sclera seg-
mentation models, with each iteration addressing a differ-
ent research problem. The 1st and 3rd SSBC (SSBC 2015
and SSBC 2016), studied the segmentation performance of
various models and additionally introduced new datasets
for sclera segmentation (i.e., MASD and SMD) [14]. The
2nd iteration (SSRBC 2016) studied recognition approaches

Table 1. Summary of the real-world and synthetic datasets used for
SSBC 2025. Reported is the number of images and subjects, the
main sources of variability and the purpose in the competition.

Origin Dataset #Images #IDs Variability Purpose

Real-world
SBVPI 1840 55 GZ, CLR Training

SMD+SLD 489 52 CN Testing
MOBIUS 3540 35 GZ, CLR, CN Testing

Synthetic
SynCROI (CE) 5500 N/A GZ, CLR Training
SynCROI (PU) 5500 N/A CN Training

SynMOBIUS 4772 N/A GZ, CLR, CN Testing

(GZ) - gaze, (CLR) - eye color, (CN) - acquisition condition

in addition to sclera segmentation techniques [16]. The 4th

iteration, SSERBC 2017, again included the recognition
task, but additionally explored the impact of gaze direc-
tion on successful segmentation and recognition [18]. The
5th competition, SSBC 2018, studied the impact of cross-
sensor image capture on the performance of sclera segmen-
tation [19], while the 6th iteration, SSBC 2019, investigated
how cross-resolution environments affect segmentation per-
formance [13]. The 7th edition, SSBC 2020, introduced a
novel dataset (MOBIUS), compiled specifically for mobile
sclera biometrics, and, consequently, focused on sclera seg-
mentation in the mobile domain [58]. A follow-up effort
to SSBC 2020 [57] then explored various types of biases
present in contemporary sclera segmentation models. Fi-
nally, the 8th iteration (SSRBC 2023) looked into segmen-
tation and recognition performance individually, as well as
the interplay between the two tasks [7].

Differently from past SSBC editions, SSBC 2025 fo-
cuses on privacy-preserving sclera segmentation models,
developed with the use of synthetically generated (identity-
less) training data. The main (distinct) goal of the competi-
tion is to study how well such models perform in relation to
models trained on real-world data from actual individuals.

3. SSBC 2025 Competition Data
The aim of SSBC is to study the use of synthetic data

for training and testing of sclera segmentation models and
investigate what impact synthetic data has on model per-
formance when compared to real-world sclera imagery. To
this end, several real-world (R) and synthetic datasets (S)
were used for the competition, i.e., (i) the Sclera Blood
Vessels, Periocular and Iris (SBVPI) dataset (R) [59], (ii)
the Mobile Ocular Biometrics in Unconstrained Settings
(MOBIUS) dataset (R) [58], (iii) the combined Sclera Mo-
bile Dataset [6] and Sclera Liveness Dataset (R) [7] (i.e.,
SMD+SLD), as well as (iv) the Synthetic Cross-Racial Oc-
ular Image (SynCROI) dataset (S), and (v) the Synthetic
MOBIUS (SynMOBIUS) dataset (S). SBVPI and SynCROI
represent the primary training datasets used throughout
SSBC 2025, while MOBIUS, SMD+SLD, and SynMO-
BIUS were used for evaluation purposes only. A summary
of the datasets is provided in Table 1, while sample images



(a) SBVPI (b) SynCROI

(c) MOBIUS (d) SMD+SLD (e) SynMOBIUS

Figure 2. Samples from the training and testing datasets used in SSBC 2025. The top row contains ocular images and available ground
truth segmentation masks of the training datasets, while the bottom row depicts testings samples and their reference masks. SSBC 2025
participant were free to train their models either on the complete 4-class mark-up, or only on the region corresponding to the sclera.

of each dataset and their corresponding segmentation masks
are presented in Figure 2. As part of SSBC 2025, images of
all datasets were resized to a resolution of 400× 300.

3.1. Real–World Datasets

SBVPI. The first real-world dataset of the competition, SB-
VPI, consists of 1840 high-resolution RGB images from 55
Caucasian subjects (29 females and 26 males) captured us-
ing a Canon EOS 60D DSLR camera with a macro lens
under controlled conditions. The images contain four gaze
directions (straight, left, right, and up) of each eye. 4 sam-
ples per eye and gaze direction were acquired at varying
distances and camera positions. Subjects span an age range
of 15–80 years and exhibit diverse eye colors. All images
have manually annotated segmentation masks of the sclera
and periocular regions, while more detailed masks, which
also include the iris and pupil are available for 100 images.

SMD+SLD. The second real-world dataset, SMD+SLD,
combines the Sclera Mobile Dataset [6] and the Sclera Live-
ness Dataset (SLD) [57], comprising 381 RGB images of
25 subjects from SMD and 108 images of 27 subjects from
SLD. The images were captured by different mobile phones
with an 8-mega pixel rear camera and under various acqui-
sition conditions to increase data variety, resulting in blurry
images, images with blinking eyes, and images taken at
different times of the day under different lighting condi-
tions. Consequently, the dataset enables evaluation of sclera
segmentation models under non-ideal or challenging condi-
tions. The dataset also contains manually generated ground
truth segmentation masks for the sclera region.

MOBIUS. The third real-world dataset of the competition,
MOBIUS, was designed specifically with mobile ocular

biometrics in mind. In total, the dataset features 16,717
high-resolution RGB images of both eyes from 100 male
and female subjects of Caucasian origin. The images were
captured using three commercial mobile devices (Sony
Xperia Z5 Compact, Apple iPhone 6s, and Xiaomi Poco-
phone F1) under varying gaze directions (straight, left,
right, up) and lighting conditions (natural daylight, indoor
light, low light), resulting in high image variety. For the pur-
poses of SSBC 2025 only the part of the dataset with manu-
ally annotated segmentation masks was utilized, consisting
of 3542 images from 35 subjects with annotated sclera, iris,
and pupil regions. However, only the sclera region was con-
sidered during the evaluation process of SSBC 2025.

3.2. Synthetic Datasets

As SSBC 2025 focuses on the development of segmen-
tation models with privacy-preserving synthetic data, we
construct two large-scale synthetic datasets, SynCROI and
SynMOBIUS, that are used for training and evaluation pur-
poses, following the approach outlined in Figure 3.

Synthetic-Data Generation. To generate synthetic data-
sets, we rely on BiOcularGAN [53], a recent deep gen-
erative framework for creating bimodal ocular images
with corresponding (synthetic, ground truth) segmentation
masks. BiOcularGAN [53] extends the StyleGAN2 [33] ap-
proach and achieves better image quality, by utilizing a
dual-branch synthesis network, which creates aligned vis-
ible and near-infrared (NIR) ocular images based on the
noise-based style information provided by the mapping net-
work, along with two discriminator networks, one for each
light spectrum, which form a joint training objective. In
addition, BiOcularGAN relies on a separate ensemble pixel
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Figure 3. Overview of data synthesis process. To generate
synthetic datasets for SSBC 2025 we train separate instances of
BiOcularGAN [53] on three real-world datasets (Cross-Eyed [49],
PolyU Cross-Spectral Iris, and MOBIUS [58]).

classifier to interpret latent features of the synthesis network
for accurate mask generation of synthetic images [64]. Cru-
cially, the model also employs the adaptive discriminator
augmentation (ADA) to enable stable training even in low-
data regimes [32]. We use only the generated RGB images
for the competition and discard the generated NIR images.

The specific BiOcularGAN [53] implementation we em-
ploy consists of an 8-layer mapping network, a synthesis
network with 7 synthesis blocks that outputs VIS-NIR data
at resolutions from 4× 4 to 256× 256, and two discrimina-
tors, each with 7 downsampling blocks. We train the model
in batches of 16 with a learning rate of 0.0025 and the Adam
optimizer [34] with β1 = 0, β2 = 0.99, and ϵ = 10−8.
The ensemble pixel classifier, used to generate ground truth
masks for the synthetic data, consists of 10 multi-layer per-
ceptrons trained after the initial generative model on ran-
domly sampled pixels of manually annotated synthetic im-
ages. Training uses the cross-entropy loss and the Adam
optimizer [34] with a learning rate of 10−3 in batches of 64,
which stops after 50 steps with no improvement beyond the
third epoch [64]. With BiOcularGAN [53], we generate the
following synthetic datasets for SSBC 2025:

• SynCROI. The first synthetic dataset, SynCROI, com-
prises 11,000 synthetic ocular images, each accompanied
by a segmentation mask of the sclera, iris, and pupil re-
gion. The dataset is divided into two large subsets with
subjects of different origin, each generated with a sep-
arate instance of BiOcularGAN [53], trained on real-

world visible (VIS) and near-infrared (NIR) image pairs.
The first subset, SynCROI (CE), is produced by training
BiOcularGAN [53] on the CrossEyed (CE) dataset, which
includes 3840 VIS-NIR image pairs of 120 Caucasian
subjects with diverse eye colours. Differently, the sec-
ond subset, SynCROI (PU), is based on the Hong Kong
Polytechnic University (PolyU) Cross-Spectral Iris Image
Database, which features 12,540 VIS-NIR image pairs of
209 Asian subjects. The models are trained to conver-
gence for 1120 and 1600 thousand images, respectively.
Once trained, 8 samples are generated with each model
and manually annotated for training the pixel classifiers.
Afterwards, random sampling of the noise input is used
with each model to produce 5500 aligned VIS and NIR
images of 256 × 256 pixels with corresponding segmen-
tation masks. For the competition, only VIS images and
their masks are considered and are resized to 400 × 300
to retain the aspect ratio of real-world training data.

• SynMOBIUS. The second synthetic dataset, SynMO-
BIUS, is derived from the MOBIUS [58] dataset and is
used specifically for evaluation in SSBC 2025. Differ-
ently from the previous setup, the BiOcularGAN [53]
model is first adapted to accommodate training on single
(VIS) spectrum images by removing the second synthe-
sis branch and its associated discriminator. The modified
model is trained on MOBIUS [58] to convergence over
2240 thousand images. To then train the pixel classifiers,
we utilize 45 manual annotations from MOBIUS [58], by
projecting their corresponding images to the latent space
of the generative model [33], along with 5 manually anno-
tated synthetic samples that contain eye occlusions. After
training, the model is used to generate 5000 images-mask
pairs, which are then resized from 256×256 to 400×300.

Characteristics of Synthetic Data. To obtain better in-
sight into the generated synthetic datasets, we utilized a
ResNet101-based [28] classifier to determine the visual
characteristics of each synthetic image, including the eye
side (left or right), the gaze direction (straight, left, right, or
up) and the eye colour (brown, blue, gray, or green). For
use on the SynCROI dataset, we trained the classifier on
the combined data of SBVPI and MOBIUS, which include
the required annotations. Training was performed on a 9 : 1
data split, over 20 epochs in batches of 32 and the Adam op-
timizer [34], with an initial learning rate of 10−4 that was
reduced by a factor of 10 if no improvements were observed
in 4 epochs. Conversely, the classifier for SynMOBIUS was
trained solely on the MOBIUS dataset to minimize the do-
main gap, with the same parameters. The distributions of
the predicted characteristics for each dataset are presented
in Figure 4. Note that both subsets of SynCROI mainly con-
tain images with a straight gaze direction and that SynCROI
(PU) only contains brown eyes, due to prevalence of these
characteristics in the training data of the generative model.
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Figure 4. Distributions of synthetic samples over different char-
acteristics: eye side (left, right), gaze direction (straight, left, right,
up), and eye color (brown, blue, gray, green). Values are estimated
with a ResNet101-based [28] classifier trained on annotations of
MOBIUS and SBVPI.

4. Benchmarking Methodology
4.1. Competition Protocol

SSBC 2025 entailed two separate phases. As part of the
first phase, participants were provided with real-world and
synthetic training data in the form of ocular images and
ground truth segmentation masks from the SBVPI and the
SynCROI dataset. The datasets were split into training and
validation subsets, however, the participants were not re-
quired to use the preassigned splits. To familiarize partici-
pants with the final submission format, a small sample of
testing data was also released, comprising images of a sin-
gle identity from MOBIUS and SMD+SLD, along with 10
random samples from SynMOBIUS. These sequestered test
datasets were provided to the participants 9 weeks after the
start of the competition, without ground truth segmentation
masks. The participants then only had a single week to sub-
mit their segmentation predictions, in order to limit poten-
tial fine-tuning on test data. Participants were required to
deliver two types of outputs for each of the 14,772 images
from MOBIUS, SMD+SLD, and SynMOBIUS, including:
(i) a binary segmentation mask, where non-zero pixels
denote the sclera region and zero-valued pixels denote the
background, and (ii) grayscale probability maps, where
pixel intensities represent the confidence of that pixel be-
longing to the sclera region. An example of expected out-
put formats is provided in Figure 5. The submitted binary
masks served as the basis for performance ranking of par-
ticipating models, while the probability maps were used for
obtaining deeper insight into model behavior and enabled
the derivation of detailed performance curves.

Figure 5. Illustration of results to be submitted (from left to
right): original image, generated binary segmentation mask, prob-
abilistic (grey-scale) segmentation prediction.

The evaluation was performed in two distinct tracks, re-
flecting the focus of SSBC 2025 on the privacy-preserving
use of synthetic biometric data in model development
and evaluation. The (i) Synthetic track focused on mod-
els trained on synthetic data of the SynCROI dataset
only, studying how such models perform on (different, se-
questered) synthetic and real-world evaluation data. The (ii)
Mixed track, on the other hand, allowed participants to
train models on a mix of synthetic SynCROI and real-world
SBVPI data, with the exact proportion being left to their
discretion. As before, the trained models were evaluated on
both synthetic and real-world evaluation data.

4.2. Performance Measures

The overall performance of the segmentation models was
evaluated both through the submitted binary segmentation
masks and the probabilistic predictions. For the binary
masks, standard segmentation metrics were derived from
true positives TP (i.e. correctly detected sclera pixels),
false positives FP (i.e. background pixels incorrectly de-
tected as sclera) and false negatives FN (i.e. sclera pixels
incorrectly detected as background), as follows:

• Precision, which measures the proportion of correctly
predicted sclera pixels relative to the total number of
pixels predicted as sclera, i.e., TP

TP+FP [38, 39, 45].

• Recall, which quantifies the proportion of true sclera
pixels that were successfully identified by the model,
computed as TP

TP+FN [23, 38, 39, 45].
• F1 score, which represents the harmonic mean of pre-

cision and recall, defined as 2 · Precision·Recall
Precision+Recall . This

aggregated metric balances the trade-off between pre-
cision and recall and serves as the main criterion for
ranking participating models.

• Intersection over union (IoU), or the Jaccard index,
captures the overlap between the predicted and the
ground truth sclera regions, normalized by their union,
calculated as TP

TP+FP+FN .

To provide a more comprehensive assessment beyond bi-
nary classifications, the grayscale (probabilistic) segmen-
tation maps were also used to produce precision-recall
curves [40, 48]. From the curves, the optimal F1 score
(F opt

1 ) and the Area Under the Curve (AUC) [4] can be
computed, offering a more nuanced comparison of models
across varying confidence thresholds.



Table 2. List of submitted entries to SSBC 2025 and their re-
spective institutions. The abbreviations used for the models in this
table correspond to the ones used in the experimental section.

Team Model Acronym Base†

Indian Institute of Technology Mandi (IIT-M) SEG-U-Sclera SAM
Beijing University of Civil Engineering and Architecture (BUCEA) SAM2-UNet SAM/UN
Warsaw University of Technology (WUT) AEOS SAM/SF
Khalifa University (KU) KU-CVML DL
Ahmedabad University (AU) ShapeGAN-DLV3+ DL
Couger Inc. SwinDANet ST/DN
SRI International UL-VMUNet M/UN
Idiap – University of Applied Sciences and Arts Western Switzerland (HES-SO) SAM-Iris SAM
Pandit Deendayal Energy University (PDPU) UNet++ Binary UN

For details on the participants from the institutions, see the author list.
†Base architecture: DL – DeepLab [5], DN – DenseNet [30], M – Mamba [27], SAM – Segment Anything Model [35]
SF – SegFormer [62], ST – Swin Transformer [37], UN – U-Net [44].

5. Summary of Submitted Approaches
A total of 9 teams submitted their entries to SSBC 2025.

Table 2 presents a summary of the submissions, while a
brief description of each of the entries is provided below.

SEG-U-Sclera (IIT-M) is a variant of SAM2 [42] trained
with uncertainty-weighted binary cross-entropy (BCE).
This loss addresses the difference between real-world and
synthetic data by focusing on the uncertain regions where
synthetic and real-world images vary.

SAM2-UNet (BUCEA) is another SAM2-based [42]
model, utilizing a U-Net-like architecture [63] with a Hiera
encoder [47] and a U-shaped 3-block decoder. Lightweight
adapters are inserted into the parameter-frozen Hiera back-
bone to ensure parameter-efficient fine-tuning for the sclera
segmentation task. The model is trained with weighted IoU
and BCE losses and deep supervision strategies.

AEOS (WUT): the WUT team used a hybrid approach,
with their architecture depending on the amount of training
data. Their SAM2-based [42] architecture tended to under-
perform on small amounts of training data, so for the Syn-
thetic track, they relied on a SegFormer-like [62] model.
This hybrid approach resulted in better generalization, as it
explicitly addressed small/large training datasets.

KU-CVML (KU) relies on the DeepLabV3+ [5] architec-
ture and the EfficientNet-B4 [50] encoder and is trained
with a hybrid loss, which is partially inspired by semi-
supervised training approaches and SAM [35], and also ad-
dresses class imbalance and contour accuracy.

ShapeGAN-DLV3+ (AU) is an extension of DeepLabV3+
[5] that consists of several sclera-segmentation-specific
modules, i.e.: (i) a combination of CoordConv [36] and de-
formable stem convolution [67] to provide spatial aware-
ness and adaptive receptive fields; (ii) a FourierLoss [24]
to enforce shape fidelity; (iii) an InverseFormLoss [3] to
promote fine boundary alignment; and (iv) a PatchGAN
discriminator that is attached to the end of the encoder and
trained in an adversarial manner, to provide a bridge cross-
ing the synthetic-to-real domain gap.

SwinDANet (Couger) is a hybrid encoder-decoder model.
The encoder is based on the Swin Transformer V2 [37]
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Figure 6. Performance comparison of the submissions trained on
(a) synthetic and (b) mixed training data, in terms of the F1 score
achieved over all the images in the evaluation datasets.

with shifted-window self-attention, which enables the mod-
eling of long-range dependencies and extracts multi-scale
features in a hierarchical contextual representation. The de-
coder is DenseNet-based [30], augmented with CSSE atten-
tion [31], emphasizing salient spatial and channel-wise in-
formation, and adaptive skip-connections that preserve spa-
tial details from the encoder.

UL-VMUNet (SRI) is a lightweight Mamba [27] variant,
combining the state-space Mamba model with a U-Net-like
architecture [61] to attain compute- and parameter-efficient
high-quality segmentations. To generalize better from syn-
thetic data, hand-crafted data augmentation is performed to
mimic different lighting, poses, and camera artifacts.

SAM-Iris (Idiap – HES-SO) is a SAM2-based [42] model,
fine-tuned with a sequential synthetic-to-real training pro-
cess inspired by [55]. The model additionally contains a
prompt point in the center of the input eye image, which en-
sures that the model focuses specifically on the eye region.

UNet++ Binary (PDPU) adopts the UNet++ [66] architec-
ture, using a ResNet-style [29] encoder. It is fine-tuned for
the task of sclera segmentation on images normalized using
ImageNet [22] statistics.

6. Benchmarking Results
In this section, we present the results of SSBC 2025,

both for the synthetic and the mixed track. Additionally,
we perform a detailed analysis of the performance of the
submitted models across different segmentation thresholds
and study the performance differentials between the corre-
sponding models from the two competition tracks.



Table 3. Comparative assessment of the models trained on synthetic data. The submissions are ranked according to the harmonic
means of the achieved F1 scores over the three evaluation datasets. The F1, Precision, Recall, and IoU scores were computed from the
submitted binary masks. The optimal F1 score on the precision-recall curve (F opt

1 ) and AUC values were calculated from the probabilistic
segmentation predictions. The harmonic means are also reported for the rest of the performance measures in the column next to the
individual dataset results. Note that the ranking is quite consistent across performance indicators.

Rank Segmentation Model Evaluation Dataset
From binary masks From probabilistic predictions

F1 Precision Recall IoU F opt
1 AUC

1 SwinDANet
MOBIUS 0.824

0.798

0.825

0.754

0.842

0.868

0.722

0.680

0.850

0.824

0.887

0.870SMD+SLD 0.725 0.640 0.866 0.587 0.758 0.809

SynMOBIUS 0.856 0.830 0.897 0.757 0.875 0.921

2 SAM2-UNet
MOBIUS 0.792

0.776

0.792

0.728

0.822

0.856

0.677

0.649

0.821

0.803

0.843

0.826SMD+SLD 0.729 0.636 0.872 0.584 0.756 0.779

SynMOBIUS 0.813 0.777 0.876 0.698 0.837 0.861

3 KU-CVML
MOBIUS 0.783

0.770

0.711

0.676

0.914

0.925

0.667

0.641

-
-

-
-SMD+SLD 0.717 0.596 0.926 0.571 - -

SynMOBIUS 0.816 0.738 0.937 0.700 - -

4 UL-VMUNet
MOBIUS 0.755

0.744

0.822

0.728

0.736

0.793

0.633

0.609

0.817

0.791

0.859

0.836SMD+SLD 0.689 0.600 0.839 0.537 0.729 0.772

SynMOBIUS 0.794 0.808 0.811 0.674 0.836 0.885

5 UNet++ Binary
MOBIUS 0.754

0.728

0.851

0.784

0.720

0.716

0.643

0.599

0.832

0.806

0.878

0.840SMD+SLD 0.660 0.690 0.668 0.513 0.746 0.762

SynMOBIUS 0.781 0.834 0.769 0.666 0.848 0.893

6 AEOS
MOBIUS 0.772

0.720

0.914

0.847

0.714

0.677

0.683

0.622

0.871

0.822

0.921

0.867SMD+SLD 0.612 0.731 0.589 0.511 0.731 0.763

SynMOBIUS 0.809 0.927 0.749 0.712 0.883 0.941

7 SEG-U-Sclera
MOBIUS 0.642

0.653

0.655

0.621

0.669

0.725

0.512

0.524

0.716

0.709

0.642

0.632SMD+SLD 0.650 0.569 0.782 0.521 0.685 0.593

SynMOBIUS 0.669 0.644 0.733 0.541 0.728 0.666

8 SAM-Iris
MOBIUS 0.633

0.640

0.639

0.619

0.657

0.693

0.487

0.497

0.675

0.677

0.683

0.672SMD+SLD 0.627 0.574 0.716 0.489 0.658 0.631

SynMOBIUS 0.662 0.648 0.710 0.516 0.700 0.707

9 ShapeGAN-DLV3+
MOBIUS 0.592

0.525

0.743

0.612

0.539

0.545

0.482

0.396

0.729

0.629

0.779

0.661SMD+SLD 0.401 0.430 0.517 0.275 0.483 0.492

SynMOBIUS 0.652 0.813 0.583 0.534 0.755 0.817

The probabilistic results for KU-CVML are not reported due to issues in the submission.

6.1. Overall Results and Performance Ranking

To evaluate and rank the SSBC 2025 submissions, we
computed average performance scores over the submit-
ted segmentation masks. The standard errors reported in
this section were obtained by partitioning the test data into
5 subject-disjoint folds and computing the corresponding
standard deviation. The harmonic mean F1 score computed
across the three evaluation datasets was used as the criterion
for model ranking. This ensured that the scoring system
rewards the submissions that maintain a steady high perfor-
mance across all evaluation datasets, rather than performing
well on some datasets and failing on others.

Synthetic Track. Since SSBC 2025 focuses on the use of
synthetically generated data in model development, the first
track of the competition benchmarked models trained solely
on synthetic data. The results of this track are presented in
Fig. 6a and Table 3. The winner of the Synthetic track is
SwinDANet, which outperformed all other approaches in
all the computed performance metrics. Most models, how-
ever, achieved reasonably competitive results, with all but 3
of the submissions landing in the 0.72–0.8 F1 score range.

The first row of Fig. 7 shows how the performance of

the models varies with different choices of the binarization
threshold in the grayscale predictions. Observe from Ta-
ble 3 that several models exhibit significant discrepancies
between their binary F1 scores and the optimal F1 scores
obtained from the grayscale predictions. This implies that
the models may benefit greatly from employing a dedicated
binarization threshold selection algorithm.

It is interesting to see that the models’ performance,
in general, matched well between the MOBIUS data and
MOBIUS-like synthetic data (SynMOBIUS), demonstrat-
ing a considerable correspondence between the generated
synthetic images and the original real-world data. F1 scores
of over 0.8 for the best performing model indicate that
it is possible to learn a competitive segmentation model
even from synthetic data with quite different characteris-
tics than the test data. When looking at the performance
on SMD+SLD, we observe consistently weaker results for
all models compared to the respective performance on MO-
BIUS or SynMOBIUS, suggesting that the domain shift be-
tween the synthetic training data and the SMD+SLD images
significantly impacts segmentation results - even for the best
performing models.
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Figure 7. Precision-recall curves for the submitted SSBC 2025 models. The operating points denoted with a full circle represent the best
possible F1 score (F opt

1 ), whereas the empty circle denotes the precision-recall point produced by the binary masks. The first row displays
the results of the submissions trained on synthetic data, whereas the second row contains submissions trained in the mixed-data scenario.
The columns show the results on the evaluation datasets in following order: MOBIUS, SMD+SLD and SynMOBIUS. The legends are
sorted by the corresponding track’s ranking. The figure is best viewed in color and zoomed in.

Mixed Track. In the mixed track, participants could use
both the synthetic as well as real-world data for model train-
ing. As can be seen from Fig. 6b and Table 4, the results of
this track were closer (considering the strongest and weak-
est model) than those of the synthetic track. This suggests
that it is still easier to train a well performing model with a
mix of real and synthetic data than with synthetic data alone,
where dedicated mechanisms need to be incorporated into
the learning procedure to account for the domain shift w.r.t.
real-world data. The winner of the mixed track, SAM-Iris,
and the runner-up, ShapeGAN-DLV3+, were within 0.001
of each other in terms of their F1 scores, which is well
within the margin of error. As such, they are considered the
joint winners of the SSBC 2025 Mixed track. Notably, all
the approaches resulted in competitive performance, with
F1 scores in the range of 0.78–0.84.

It is interesting to note that the two worst performers
from the Synthetic track performed the best in the Mixed
track, driven chiefly by their significant performance im-
provement on the SMD+SLD evaluation data. The two best
performers from the Synthetic track maintained their high
performance, taking the 3rd and 4th place in the Mixed track.

The second row of Fig. 7 shows the Mixed track results
over the grayscale predictions. We observe the significantly
tighter precision-recall curves relative to the Synthetic track
in the top row, again implying a much closer performance
of the submitted models. The discrepancies between the bi-
nary F1 and optimal grayscale F1 scores are still present,
but significantly lower. This implies that a good threshold-

ing strategy is of less importance with mixed-trained mod-
els. The exception is UNet++ Binary, which achieves the
top performance in its probabilistic metrics, but only the 7th

place in the binary ranking.

6.2. Differential Performance

The goal of SSBC 2025 was to establish how viable the
use of synthetic data is in developing sclera segmentation
models. As such, we are interested in the performance dif-
ferentials between the models trained on the synthetic data
and their mixed-trained counterparts.

From Fig. 8, we can see that every single model’s per-
formance improved from the Synthetic to the Mixed track.
However, for most of the models, the performance boost
was on the lower end, mostly under 0.05 in terms of F1

score. However, for the three worst-performing models of
the Synthetic track, the performance boost from adding the
real-world training data was substantial. This implies that
the choice of architecture is important when training on syn-
thetic data alone, as certain model architectures perform
significantly worse without real-world samples to comple-
ment the synthetic data. However, with many of the per-
formance boosts being small, the synthetic training data has
shown to be a feasible approach for training most models in
cases where privacy protection is essential.

The largest difference in performance was seen with
the ShapeGAN-DLV3+ model, which features a generator-
discriminator architecture, albeit different from classical
GANs, since the discriminator is attached to the generator



Table 4. Comparative assessment of the models trained on mixed data. The submissions are ranked according to the harmonic means
of the achieved F1 scores over the three evaluation datasets. The F1, Precision, Recall and IoU scores were computed from the submitted
binary masks. The optimal F1 score on the precision-recall curve (F opt

1 ) and AUC values were calculated from the probabilistic segmen-
tation predictions. The harmonic means are also reported for the rest of the performance measures in the column next to the individual
dataset results. Note that the ranking is quite consistent across performance indicators.

Rank Segmentation Model Evaluation Dataset
From binary masks From probabilistic predictions

F1 Precision Recall IoU F opt
1 AUC

1 SAM-Iris
MOBIUS 0.850

0.839

0.914

0.853

0.806

0.840

0.751

0.733

0.876

0.865

0.918

0.910SMD+SLD 0.804 0.749 0.893 0.684 0.833 0.881

SynMOBIUS 0.865 0.920 0.825 0.769 0.889 0.933

1 ShapeGAN-DLV3+
MOBIUS 0.858

0.838

0.870

0.808

0.867

0.889

0.769

0.733

0.882

0.863

0.926

0.909SMD+SLD 0.780 0.712 0.885 0.649 0.811 0.862

SynMOBIUS 0.884 0.862 0.917 0.800 0.901 0.944

3 SAM2-UNet
MOBIUS 0.847

0.826

0.860

0.795

0.858

0.881

0.756

0.720

0.871

0.852

0.906

0.887SMD+SLD 0.775 0.704 0.888 0.649 0.806 0.842

SynMOBIUS 0.862 0.841 0.899 0.767 0.882 0.918

4 SwinDANet
MOBIUS 0.848

0.822

0.873

0.800

0.842

0.864

0.756

0.715

0.875

0.850

0.916

0.896SMD+SLD 0.752 0.681 0.866 0.623 0.786 0.833

SynMOBIUS 0.878 0.881 0.886 0.790 0.896 0.945

5 UL-VMUNet
MOBIUS 0.835

0.808

0.902

0.804

0.796

0.830

0.732

0.690

0.873

0.838

0.927

0.893SMD+SLD 0.739 0.673 0.845 0.600 0.770 0.820

SynMOBIUS 0.859 0.881 0.850 0.760 0.881 0.942

5 SEG-U-Sclera
MOBIUS 0.823

0.807

0.855

0.799

0.815

0.841

0.722

0.699

0.843

0.833

0.834

0.820SMD+SLD 0.778 0.729 0.862 0.659 0.811 0.786

SynMOBIUS 0.823 0.823 0.846 0.721 0.846 0.840

7 UNet++ Binary
MOBIUS 0.811

0.803

0.906

0.849

0.764

0.792

0.710

0.692

0.889

0.872

0.941

0.928SMD+SLD 0.769 0.764 0.812 0.641 0.835 0.892

SynMOBIUS 0.832 0.893 0.801 0.730 0.895 0.954

8 AEOS
MOBIUS 0.850

0.797

0.875

0.816

0.842

0.799

0.754

0.682

0.874

0.823

0.934

0.880SMD+SLD 0.701 0.714 0.720 0.569 0.733 0.782

SynMOBIUS 0.859 0.881 0.850 0.762 0.880 0.945

9 KU-CVML
MOBIUS 0.795

0.780

0.725

0.688

0.928

0.937

0.689

0.658

-
-

-
-SMD+SLD 0.719 0.601 0.928 0.576 - -

SynMOBIUS 0.835 0.758 0.954 0.730 - -

The probabilistic results for KU-CVML are not reported due to issues in the submission.

SwinDANet
SAM2-UNet

KU-CVML
UL-VMUNet

UNet++_Binary
AEOS

SEG-U-Sclera
SAM-Iris

ShapeGAN-DLV3+
0

0.1

0.2

0.3

0.4

F 1

MOBIUS SMD+SLD SynMOBIUS

Figure 8. Performance differentials of the submitted models
from the Synthetic track to the Mixed track on three test datasets,
i.e., MOBIUS, SMD+SLD and SynMOBIUS. The graph shows
differences in the achieved F1 scores, i.e., Fmixed

1 − F synthetic
1 .

Positive values denote a better performance in the Mixed track.

bottleneck. Since GANs are well known to require large
amounts of training data, we can partly attribute the dif-
ference in performance simply to the increased size of the
training dataset with additional real-world samples. How-
ever, we note that the real-world SBVPI dataset was sig-
nificantly smaller than the synthetic training dataset. The
second-largest difference came with the SAM-Iris model,
which relies on a training pipeline with an explicit transition
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Figure 9. Performance/complexity trade-off. The areas of the
circles correspond to the computational complexity of the models,
expressed in FLOPs. Best viewed in color and zoomed in.

from synthetic to real training data, which explains the dis-
crepancy in performance. Similarly, AEOS (which resulted
in the fourth-largest difference) employed completely dif-
ferent architectures for the two tracks. As such, we note that
three of the four biggest performance differentials between
the Synthetic and the Mixed track are a result of explicit
methodological choices rather than domain shifts.

6.3. Performance Across Different Complexities

Finally, we study the trade-off between model perfor-
mance and complexity, which is a key factor for real-world
deployment. From Fig. 9, we see that most of the submitted



(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)
Figure 10. Qualitative comparison of the submitted models (in terms of binary masks) on selected images. The top three rows contain
the well-performing samples from the evaluation datasets (in order, MOBIUS, SMD+SLD, SynMOBIUS), while the bottom three rows
show poor-performing samples. Observe the difference in the segmentation quality across the evaluated models. The figure shows (a) the
original image; (b) the ground truth mask; and the submitted binary masks from: (c) SwinDANet, (d) SAM2-UNet, (e) KU-CVML, (f)
UL-VMUNet, (g) UNet++ Binary, (h) AEOS, (i) SEG-U-Sclera, (j) SAM-Iris, and (k) ShapeGAN-DLV3+.

models’ complexities are roughly on par. However, a no-
table exception here is UL-VMUnet, which achieved com-
petitive performance despite a comparatively tiny size (229
KB) and computational complexity (60 MFLOPs). This re-
sult is in line with recent works in sclera biometrics [56,60],
where it was shown that typically employed network archi-
tectures could be significantly reduced in size and complex-
ity without a noticeable degradation in performance.

It is also worth noting that UL-VMUNet ranked higher
in the Synthetic than in the Mixed track, which may imply
that smaller, less complex models generalize better when
trained with synthetic data and are not disturbed as easily
by artifacts produced by the data generation procedure.

6.4. Qualitative Evaluation

In Fig. 10, we show some of the best and worst cases of
the generated segmentation masks. Note that even on the
best-performing samples, models often struggled with mi-
nor artifacts, such as those resulting from specular reflection
in the iris. Among the poor performing samples, we often
find images where the sclera is occluded, either by the eye-
lid (in the case of a partially closed eye, such as in row 4 of
Fig. 10) or by external sources (such as the finger in row 6 of
Fig. 10). Another source of errors is lighting-induced skin
discolouration (row 5 of Fig. 10), particularly when the skin
around the eye appears significantly lighter than elsewhere.
Additionally, a poorly-lit sclera (row 6 of Fig. 10) can also
cause issues in segmentation with many of the models.

7. Conclusion
The 2025 edition of the Sclera Segmentation Bench-

marking Competition (SSBC 2025) was organized to
benchmark the performance of contemporary segmentation

models in the task of sclera segmentation, and to establish
the viability of using synthetically generated data to develop
and train such models. The use of synthetic data ensures
no identifying information is required to train segmentation
models and facilitates the ethical development of biomet-
ric systems. To this end, SSBC 2025 was conducted in two
tracks, which differed in the training data the contestants
used – purely synthetic data for the first track and a mix of
synthetic and real-world data for the second. Nine research
groups participated in the competition.

The winner of the Synthetic track was SwinDANet (sub-
mitted by the Couger Inc. team), while the Mixed track had
two joint winners, whose results were within 0.001 of each
other: SAM-Iris (Idiap – HES-SO team) and ShapeGAN-
DLV3+ (AU team). The results of the competition point to
the high fidelity of synthetic data and its viability in model
training, as most approaches performed roughly as well in
the Synthetic track as in the Mixed one, and the models
that did substantially improve their performance between
the tracks, did so mostly due to methodological decisions,
rather than any infidelities or improprieties in the synthetic
training data. This is an important result for future re-
search, as synthetically generated datasets enable biometric
research without the risks of privacy breaches or abuse, as
well as being significantly easier to obtain or compile.
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2017: Sclera segmentation and eye recognition benchmark-
ing competition. In IEEE International Joint Conference on
Biometrics (IJCB), pages 742–747, 2017. 2

[19] A. Das, U. Pal, M. A. Ferrer, M. Blumenstein, D. Štepec,
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