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ABSTRACT

Deep-learning models, including those used in biometric recognition, have achieved remarkable per-
formance on benchmark datasets as well as real-world recognition tasks. However, a major drawback
of these models is their lack of transparency in decision-making. Mechanistic interpretability has
emerged as a promising research field intended to help us gain insights into such models, but its appli-
cation to biometric data remains limited. In this work, we bridge this gap by introducing the FaceMINT
library, a publicly available Python library (build on top of Pytorch) that enables biometric researchers
to inspect their models through mechanistic interpretability. It provides a plug-and-play solution that
allows researchers to seamlessly switch between the analyzed biometric models, evaluate state-of-the-
art sparse autoencoders, select from various image parametrizations, and fine-tune hyperparameters.
Using a large scale Glint360K dataset, we demonstrate the usability of FaceMINT by applying its
functionality to two state-of-the-art (deep-learning) face recognition models: AdaFace, based on
Convolutional Neural Networks (CNN), and SwinFace, based on transformers. The proposed library
implements various sparse auto-encoders (SAEs), including vanilla SAE, Gated SAE, JumpReLU
SAE, and TopK SAE, which have achieved state-of-the-art results in the mechanistic interpretability
of large language models. Our study highlights the promise of mechanistic interpretability in the
biometric field, providing new avenues for researchers to explore model transparency and refine
biometric recognition systems. The library is publicly available at www.gitlab.com/peterrot/facemint.

1. Introduction

Deep neural networks are often considered non-trans-
parent as their decision-making processes are difficult for
humans to fully understand [21]. This is particularly con-
cerning for high-stakes applications such as face recognition,
which is increasingly vital in areas like personal authen-
tication and law enforcement [36]. While neural network-
based biometric models achieve state-of-the-art accuracy,
their practical utility is often limited to scenarios where
detailed explainability is not strictly required. However,
in applications where incorrect model decisions can have
serious consequences (e.g., denial of border crossing or
wrongful accusation), explainability becomes crucial. Face
recognition templates, for instance, encode information in
a highly entangled and compressed manner, where indi-
vidual features encapsulate multiple factors of variation,
making them difficult for humans to interpret [46]. Similarly,
automated recognition decisions are usually the results of
complex processing operations across hierarchies of model
layers, leading to decision outcomes that are challenging to
explain and understand. Privacy laws and regulations, such
as GDPR, explicitly mandate that any automated decision
affecting individuals must be interpretable, ensuring trans-
parency, accountability, and fairness in Al-driven processes.
Additionally, the EU AI Act emphasizes interpretability as
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Figure 1: The FaceMINT library provides tools for the mecha-
nistic interpretability of CNN and transformer-based biometric
models, allowing researchers to analyze neurons, channels,
and layers using activation maximization. It includes sparse
autoencoders, advanced image parameterizations, and features
like activation-based dataset searches to streamline analysis.

a key prerequisite for ensuring human oversight and ac-
countability in Al systems, which are recognized as essen-
tial components of trustworthy AI [12]. To address these
challenges, the field of Explainable Artificial Intelligence
(XAI) and Explainable Face Recognition (XFR) seeks to
provide insights into the decision-making processes of these
models [50].
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While interpretability can be approached from different
angles, mechanistic interpretability focuses on building a
bottom-up understanding of how individual components
of deep learning models function. This approach provides
additional insights into how a model arrives at its decisions
by analyzing the role of individual components (e.g., neu-
rons, channels, or layers) in constituting the system as a
whole [27]. Recent advances in mechanistic interpretabil-
ity have shown promise in understanding complex models,
particularly in the context of large language models [7, 4],
yet this potential remains largely underexplored in biometric
recognition. Despite the unique characteristics of biometric
models, little effort has been made to tailor such inter-
pretability methods to uncover insights specific to biomet-
rics.

At the same time, researchers have proposed many ap-
proaches to explain the decision-making processes of bio-
metric models. These proposed solutions are often designed
for specific architectures, and adopting them for other bio-
metric models and modalities requires extensive modifica-
tions. In [19], the authors propose an explanation map for
biometric verification tasks, where each pixel of an image
pair is assigned a similarity score, which allows a confidence
score of the final biometric matching decision to be derived.
This is a typical example of post-hoc explanation that does
not account for the actual mechanism implemented by the
Al model making the decision. In [20], the authors propose a
method to train face recognition models to be more explain-
able to begin with. This is an exciting prospect for the future
of explainable Al, however for the time being it is necessary
to explain and interpret existing state-of-the-art biometric
models that have been trained without inherent explainabil-
ity of interpretability in mind. In [36], the authors show the
LIME model for assigning feauture importance can highlight
visually salient features in face recognition tasks. In [47],
the authors use similar feature importance methodologie to
derive a face image quality metric for biometric tasks. We
note that most of these proposed methods are specific to
either biometric models or training methodologies. In turn,
this makes it challenging to interpret diverse biometric mod-
els effectively, limiting the broader applicability of current
methods across different architectures. in contrast, the sparse
autoencoder approach used here can be adapted to arbitrary
models, does not require re-training or modification, and en-
ables deep inspection of the underlying model mechanisms
as opposed to explaining the model decisions alone.

To address these limitations, we introduce in this paper
the FaceMINT library, a plug-and-play Python library (using
PyTorch) that enables researchers to: (i) easily integrate,
analyze and study different biometric models from an ex-
plainability point of view, (ii) experiment with methods
for mechanistic interpretability, and (iii) visualize result
of the explainability analysis. The library supports state-
of-the-art techniques for mechanistic interpretability and
facilitates analysis at different model levels, i.e., neuron,
channel, and layer levels, as illustrated in Figure 1. Using the
library’s functionality, we demonstrate in the experimental

section the effectiveness of mechanistic interpretability in
analyzing two distinct state-of-the-art deep-learning mod-
els for face recognition: AdaFace [18], based on CNNs,
and SwinFace [32], based on transformers. Specifically,
FaceMINT implements state-of-the-art sparse autoencoders
(SAEs) that have demonstrated strong performance in mech-
anistic interpretability for large language models. These
include Gated SAE (G-SAE) [34], TopK SAE [14], and
JumpReLU SAE [35], along with standard baseline models
such as vanilla SAE and PCA for reference. In summary, the
following major contributions in this paper are:

e We introduce a novel publicly available Python li-
brary, called FaceMINT, that implements mechanistic
interpretability methods for biometric recognition. It
provides researchers with a convenient way to analyze
biometric models using state-of-the-art approaches
from this field.

e We present a comprehensive set of experiments using
state-of-the-art sparse autoencoders combined with
activation maximization on biometric models. This is
the first study to explore these approaches in the con-
text of biometric recognition, offering new insights
into their behavior and effectiveness when applied
to face recognition systems. Our results contribute
to the broader understanding of how interpretability
tools can be adapted and applied within the biometric
domain.

In the Section 2, we provide an overview of related
work on explainable face recognition and mechanistic in-
terpretability. In the Section 3 we introduce the FaceMINT
library, outlining its features for analyzing neuron, layer, and
channel activations, supported image parametrizations, and
regularization techniques. We also introduce state-of-the-
art sparse autoencoders integrated into FaceMINT, which
underpin our experiments. In the Section 4 and the Section 5,
we describe our experimental setup and report the results
considering two state-of-the-art face recognition architec-
tures: the CNN-based AdaFace and the transformer-based
SwinFace. In the Section 6, we discuss our results and
summarize our conclusions.

2. Related Work

2.1. Explainable Biometrics

The primary goal of explainable biometrics is to enable
understanding of the fundamental components of a biomet-
ric system and to interpret the decisions it makes [25, 50].
One branch of methods for interpreting the decisions of
biometric models aims to explain which facial features from
two different face images lead to the decision that they do
(or do not) belong to the same identity. These methods are
usually based on intensity map optimization, such as Grad-
CAM [26, 55] and Integrated Gradients (IG) [31].

The second branch, which is the focus of this work, aims
to understand and interpret the decision-making process of
the recognition model itself. Several approaches have been
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proposed in the literature, with LIME (Local Interpretable
Model-agnostic Explanations) [6] and SHAP (SHapley Ad-
ditive exPlanations) [5] being popular techniques for un-
derstanding why the model made specific decisions, based
on the idea of attributing feature importance to different
segments of the input image. Based on these ideas, several
developments have been proposed. ALIME [41] adds a de-
noising autoencoder step to better approximate the perturbed
data manifold. It then uses distance in the latent space as
opposed to directly comparing data samples. This has been
shown to increase local fidelity of the generated explana-
tions. Similarly, SLICE [6] seeks to stabilize the generated
explanations using sign-entropy-based feature elimination.
Meanwhile, BayLIME [54] treats the local linear coefficients
of input features as random variables and performs Bayesian
updating based on expert-defined priors to produce explana-
tions.

While these SHAP and LIME - based methods pro-
vide post hoc explanations of model decisions, they do
not reveal how internal layers process information or how
specific neurons interact to form higher-level concepts. Ad-
ditionally, these methods typically operate only at the input
level, whereas real-world face recognition models rely on
latent (embedding-space) representations that SHAP-based
explanations fail to capture. Different from the methods dis-
cussed above, mechanistic interpretability follows a bottom-
up approach, aiming to understand the system by analyzing
individual components and their interactions.

2.2. Mechanistic Interpretability

The idea behind mechanistic interpretability approaches
is that by analyzing and understanding individual compo-
nents, we can infer how the entire system operates [4].
Mechanistic interpretability has provided valuable insights
into explaining large language models, such as identifying
neurons whose activations directly correspond to specific
concepts [44]. Similarly, efforts to interpret vision models
have also gained attention [2, 57]. However, despite its
significant potential, mechanistic interpretability remains
largely underexplored in the field of biometrics. Mechanistic
interpretability could potentially enhance various fields of
biometrics, such as cancelable biometrics [28], by enabling
more precise transformation or masking of facial features
through interpretable representations.

Among the different solutions available to interpret mod-
els in a mechanistic manner, various sparse autoencoders
have emerged as a powerful solution for this task. By en-
forcing sparsity, these models can disentangle complex rep-
resentations, making it easier to identify and analyze the
role of individual features in decision-making processes.
Instead of directly analyzing final or intermediate features,
sparse autoencoders are commonly used to generate sparse
representations, aiming to encode factors of variation in the
datain a less entangled manner. The base sparse autoencoder
was first proposed for use in the mechanistic interpretabil-
ity of large language models in [14]. Different formula-
tions of activation and loss functions were subsequently

proposed to improve their reconstruction fidelity and loss
explained [34, 35]. The Sparse Autoencoder methodology,
originally developed for large language models, has also
been successfully applied to interpretability tasks in vision
models [15, 39]. The advantage of sparse autoencoders lies
in their ability to learn meaningful representations in an
unsupervised manner, which have also been shown to be
interpretable.

In standard sparse autoencoders (SAEs) [9], the LI
penalty used to enforce sparsity often introduces unwanted
behavior, such as shrinkage, where smaller feature activa-
tions are systematically underestimated. The L1 weight pa-
rameter also requires extensive fine tuning while training the
autoencoder. To address these issues, alternate formulations
of the SAE have been proposed.

Gated SAEs (G-SAEs) [34] were proposed to reduce
undesirable biases caused by the L1 penalty, such as shrink-
age, by separating the tasks of selecting features to activate
and estimating their magnitudes. By applying the L1 penalty
only to the selection process, Gated SAEs reduce shrinkage,
enabling more accurate and interpretable representations.

TopK SAE [14] sparse autoencoders were proposed to
address the shrinkage and bias introduced by L1-based spar-
sity methods, by enforcing sparsity through the explicit
selection of the top-k activations while setting all others to
zero. TopK SAE explicitly controls the number of active
neurons, addressing shrinkage bias by selecting the top-
k largest activations and avoiding the need for L, regu-
larization, thereby preserving activation magnitudes. Dead
latents are minimized through an initialization procedure
that aligns encoder and decoder weights, and an auxiliary
loss (AuxK) that encourages inactive latents to contribute to
reconstruction.

JumpReLU SAE [35] offers an alternative approach to
training sparse representations by addressing the problem of
suppressed negative activations, which typically occurs in
vanilla SAEs. Standard activation functions like ReLU per-
manently suppress negative activations, which contributes
to polysemanticity and prevents neurons from specializing,
ultimately degrading interpretability and modularity in deep
networks. JumpReLU introduces a deterministic, learnable
jump branch that reroutes negative inputs through a low-rank
transformation.

All the aforementioned sparse autoencoders have pri-
marily been evaluated on language-related tasks, with lim-
ited exploration of their performance in computer vision
or biometrics. To address this gap, our library includes a
comprehensive collection of state-of-the-art SAE implemen-
tations for comparison on these tasks.

2.3. Interpretation via Input Image Optimization
A straightforward way to obtain a possible interpretation
of the role of a specific component (e.g., a neuron) in a net-
work’s decision-making process is to examine which images
from the dataset maximally activate its response and look at
their common properties. Another common approach is Ac-
tivation Maximization [11, 17, 56], where the interpretation
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is obtained by optimizing the input (starting, for example,
from noise) to maximize the component’s activation. Since
gradients are typically available in such networks, the input
image can be optimized according to a specific criterion
(e.g., maximizing the activation of a selected neuron or
layer).

For biometric recognition models it is often assumed
that the input is an aligned image of a biometric sample
(e.g., a face, eye, etc.) [18]. Therefore, this optimization
process can be further refined by incorporating priors, such
as prior knowledge about the expected spatial location of
certain facial features [48]. A positive aspect of this approach
is that the results are in the form of images (i.e., in a
format interpretable by humans), from which we can infer
their role in the neural network after optimization. Google
developed the library Lucid' for such model exploration in
the TensorFlow environment. A partial reimplementation
also exists for models in the PyTorch environment, called
Lucent?. In our work, we used these libraries as a foundation
for developing a library in the PyTorch environment, where
we extended and adapted its functionality for convenient use
in the field of biometrics.

2.4. Toolkits for Explainable Biometrics

Several toolboxes, such as Xplique [13], PiIML-Toolbox
[43], and OmniXAI [52], have been proposed for explaining
Al models. However, biometric systems, particularly in face
recognition, require tailored interpretability approaches due
to the need to distinguish and highlight subtle changes in
facial features and regions that differentiate similar individ-
uals. XAlface [23] provides implementations for post-hoc
explanations in deep face recognition systems. It uses layer-
wise relevance propagation (LRP) for feature attribution,
along with saliency-based techniques like Grad-CAM++ [8]
and Score-CAM [49] to highlight critical facial regions, and
model-agnostic methods like LIME, SHAP, and RISE [30]
for instance-level interpretability.

While the aforementioned toolkits and libraries provide
valuable insights into a model’s predictions and some analy-
sis of salient input features, they do not incorporate mecha-
nistic interpretability approaches. Mechanistic interpretabil-
ity tools have the potential to offer a deeper understanding
of the model’s internal workings. With FaceMINT we aim
to address this gap and make a powerful software library for
mechanistic interpretability available to the biometric com-
munity. Our library extends the input optimization approach
to sparse autoencoders, and provides pretrained SAEs for use
with state-of-the-art face recognition models.

3. The FaceMINT Library

FaceMINT is an open-source Python library built on
the popular PyTorch deep learning framework. It provides
a suite of tools for mechanistic interpretability, enabling
researchers and practitioners to analyze and interpret the

11 ucid: https://github.com/tensorflow/lucid
2Lucent: https://github.com/greentfrapp/lucent

inner workings of various biometric models. The library is
designed to enhance the transparency and understanding of
biometric systems and is publicly available at www.gitlab.
com/peterrot/facemint.

Mechanistic interpretability of biometric models can be
approached in multiple ways, many of which are supported
within FaceMINT, as illustrated in Figure 2. Specifically,
the library allows to explore various models characteristics
at the neuron, channel and layer levels, and their arbitrary
combinations. FaceMINT supports three key components
that leverage conceptually different functionalities, which
are described below and elaborated upon in the reminder of
this section. These include:

e Activation Maximization with Input Parametriza-
tions: The first key component of FaceMINT are
techniques for optimization of input images to max-
imize the activation of a specific component (e.g.,
neuron, layer, channel, or arbitrary combination of
them). FaceMINT techniques for this task can be
applied to either intermediate components or final
biometric templates (i.e., extracted features used for
recognition). In the remainder of this section, we
also outline the supported image parametrizations in
FaceMINT that help to enhance interpretability.

e Sparse Autoencoders: The second component of
FaceMINT are tools that extend activation maximiza-
tion to sparse representations by incorporating sparse
autoencoders (SAEs), a technique commonly used in
mechanistic interpretability. The idea behind these
interpretability mechanisms is to append SAEs to
intermediate features or biometric templates to obtain
more disentangled, sparse encodings. In the following
sections, we describe the implemented SAEs and their
role in supporting interpretability.

e Dataset Image Search: The library also provides
functionality to identify images from the (training)
dataset that maximize the activation of specific com-
ponents, enabling quick comparison with images gen-
erated through input optimization techniques (e.g.,
Deep Image Prior). This aids in gaining insights into
the model’s decision-making process.

3.1. Activation Maximization with Input
Parametrizations

In this section, we describe the process of input image
optimization to achieve maximal activation and present the
individual functionalities available in the FaceMINT library.
These functionalities are summarized in Table 2 and are
further detailed in the following paragraphs.
Input Image Optimization. For a selected biometric model
with pre-trained weights, the goal is to create an optimized
input image I* that induces maximum activation in a specific
component g; of the model, such as a neuron, layer, channel,
or their combination, while maintaining interpretability or
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Table 1

Taxonomy of selected explanation approaches discussed in this work. The first block groups local feature-importance surrogates;
the second lists sparse-concept methods built on auto-encoders; the third covers prototype generation via activation maximization
with differentiable image parameterizations.

Representative methods

LIME [37], KernelSHAP [22]

Family Typical modality Core mechanism / distinguishing idea

Local feature
importance

(surrogate-based)

tabular, vision Perturb the neighbourhood of the target instance and fit a kernel-
weighted linear surrogate; KernelSHAP chooses the Shapley kernel
for axiomatic guarantees.

SLICE: sign-entropy filtering & adaptive perturbations for run-
to-run stability. ALIME: latent-space sampling via a denoising
auto-encoder for manifold-aware locality. BayLIME: Bayesian linear
surrogate with priors and posterior uncertainty estimates.

SLICE [6],
BayLIME [54]

ALIME[41], tabular, vision

Sparse Auto-Encoder
(concept-library)

SAE[7], G-SAE[34], topk-SAE[14], LLMs, vision models

JumpReLU-SAE [35]

Train sparsity-regularised auto-encoders (group, top-k, gated,
JumpReLU variants); the resulting sparse codes act as disentangled,
semantically coherent concepts that explain network activations.

Activation maximization

Feature Visualization [27],  vision
(differentiable image

Lucid [45], DIP-AM [24]

Optimise a differentiable image parameterization (e.g. Fourier
texture, CPPN, DIP-net) to maximise neuron or class activation,

parametrizations) producing visual prototypes/explanatory images.

FaceMINT Library
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Figure 2: Block diagram of FaceMINT features, enabling mechanistic interpretability in biometrics. The library supports activation
maximization on arbitrary model components, such as neurons, channels, layers, or their combinations. It incorporates state-of-
the-art image parametrizations, like DIP and CPPN, to guide input image optimization. FaceMINT also includes recent sparse
autoencoders (e.g., Gated SAE, TopK SAE, JumpRelLU) that can be optimized at any point in the network. It is compatible with
versatile deep architectures, such as CNNs and Transformers, and offers advanced utilities to facilitate research on mechanistic

|
Utility Features

Database Search
Gated SAE

Cluster Analysis
TopK SAE

Vanilla SAE

interpretability in biometric models.

realism through regularization. This objective is formally
defined in Equation 1:

I" = arg max(a;(I) — Ry(D)), e

where a;(I) is the activation of the selected component, and
R, () is aregularization term controlled by parameters 6 that
guides the optimization process.

Biometric models are differentiable with respect to their

input, and the parameterization of the image must also be
differentiable. Through gradient descent, we can modify its
parameters (pixel values, weights, etc.) to ensure optimal
visualization. Therefore, we implemented several image pa-
rameterizations as defined below. The added value of the
FaceMINT library is that it allows the recognition model and
the choice of components to be analyzed to be modified in a
simple, modular way.
RGB Space Parameterization. The simplest way to pa-
rameterize the input image is to take a three-channel image
as the basis, where the values for each RGB channel are
randomly sampled from a normal distribution. From an
interpretability perspective, RGB images are convenient, as
humans intuitively understand them.

Parameterization in Frequency Space (FFT). It is also
possible to sample the RGB channel values from the fre-
quency space. This is done by sampling the x and y coordi-
nates from the frequencies of the discrete Fourier transform,
which are then scaled to achieve uniform transformation.
Using the inverse N -dimensional discrete Fourier transform
for real inputs, we obtain values that are reshaped to the
desired image size [27]. The advantage of this method is
that it ensures spatial decorrelation of values within each
channel. To ensure decorrelation between color channels,
a Cholesky decomposition is performed on the covariance
matrix of the RGB channels from the images on which the
model was trained.

CPPN Parameterization [42]. A Compositional Pattern
Producing Network (CPPN) [42] further constrains opti-
mization by enforcing that adjacent pixels have similar col-
ors. This parameterization modifies randomly initialized
parameters of a multi-level neural network, which maps the
(x, y) coordinates of the image to RGB values.

DIP Parameterization [48]. The Deep Image Prior (DIP)
[48] assumes that a well-designed model architecture, with-
out prior training, can capture the low-level features of
images. DIP is widely used in the literature for image restora-
tion. DIP is implemented using a UNet architecture [38] with
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Equation
a0 = ajlc,u 0]

Functionality
Neuron Activation

H-1W-1C-1
L 2 Layer Activation aM =4 V]VC > ¥ ¥ alhlkl
g3 W€ 120 k=0 =0
o G H-1W-1
gé Channel Activation a, ()= ﬁ > alc,l,k]

I
=3
=~
I

0

Arbitrary Interactions n/a

& @ | RGB Space Ln~ N,o?)
£-8 | Frequency Space [27] n/a
S8 [ CPPN[47] n/a
& = ["DIP [48] n/a
a Channel Tice = Irgs - I + BGgog - (1 = 1)
g =a@-1-1,)
H-1W-1C-1
L R,M=% ¥ ¥ |[Mh Lkl -
/=0 k=0 _h=0
“ H-TW-T1C-1
3 L, R,D=3% % ¥ Vlhlkl-e?
E - (=0 k=0 _h=0
BN Diversity G,; = Y alku,v]-all,uv]
8 o
3 _ vec(Gy)-vec(Gy)
& Re®=% %, IIvec(G I Flvee(GyI

Total Variance Ry =Y (U0 — 1, )"

ij

[
+(Ii+1,/ - I[,/)Z) :

I — parameterization of the input,
I' — new input image,

a — alpha channel,

a — activation,

i — layer index,

¢ — channel index,

u, v — spatial coordinates,

H — height of the conv. layer,

W — width of the conv. layer,

C — no. of channels,

a;[c,u, v] — activation index,
Iy, — image with k channels,
height w, and width h,

I[h, I, k] — pixel index,

&£ — small constant value,

BG — background,

R — regularization function,

G — Gram matrix,

I, — average value of the «
channel.

Table 2
Table of supported functionalities in the FaceMINT library.

randomly initialized weights. UNet combines information
from different levels, enabling the generation of more inter-
pretable images.

Optimization of the o Channel. The optimization of
images with RGB or FFT parameterization has the drawback
that it does not provide insight into the importance of indi-
vidual features. By adding a fourth channel (« transparency)
to the parameterization, we can also optimize depth in the
input image (i.e., what is in the foreground and background
of the image). This is achieved by merging the four-channel
image back into a three-channel RGB image before passing it
into the model, blending it with a random background based
on the values of the « channel.

3.2. Sparse Autoencoders

While methods for maximizing activation can be ap-
plied directly to arbitrary representations in a recognition
network, this approach is often suboptimal as such repre-
sentations are typically highly entangled [29]. Mechanistic
interpretability leverage SAEs to promote more sparse repre-
sentations [4]. The FaceMINT library implements multiple
SAEs that achieved state-of-the-art performance in inter-
preting large language models. The following subsections
provide a detailed description of these methods.
Gated SAE [34]. G-SAEs improve sparse autoencoder
performance by decoupling feature selection from magni-
tude estimation, effectively addressing the issue of shrinkage
bias. This is a phenomenon where the L, penalty drives

feature activations toward smaller values, resulting in under-
estimation to promote sparsity. By applying the L; penalty
selectively to the feature selection process, G-SAEs achieve
a better balance between sparsity and reconstruction accu-
racy, yielding sparser but more faithful decompositions. Key
hyperparameters in G-SAE training include the L; sparsity
coefficient and the weight scaling factor in the magnitude
estimation path, both of which are critical for optimizing
performance.

TopK SAE [14]. The TopK SAE [14] explicitly controls
the number of active neurons by selecting the top-k largest
activations, to preserve activation magnitudes. Key hyperpa-
rameters include the sparsity level k, which directly controls
the number of active neurons, the auxiliary loss coefficient a,
and the learning rate, all of which critically impact sparsity,
reconstruction, and training stability.

JumpReLU SAE [35]. JumpReLU SAE [35] improves
reconstruction of the input using a discontinuous activation
function that zeroes out pre-activations below a threshold,
enhancing sparsity while preserving activation magnitudes.
The key hyperparameters are the threshold € and kernel
bandwidth e, which balance between sparsity and accuracy
of the reconstruction during training.

Vanilla SAE [1]. We also evaluate the vanilla SAE [1] as a
baseline to assess the improvements made by the more ad-
vanced SAE architectures. This comparison helps highlight
the performance gains of the enhanced SAEs.

3.3. Dataset Image Search

The library also provides functionality to identify images
from the (training) dataset that maximally activate specific
components and compare them to optimized inputs gener-
ated through activation maximization using image priors
(e.g., DIP, CPPN). Inspecting both sets allows users to
reason about semantic alignment, i.e., whether real-world
images that maximally activate a given component depict the
same high-level features (e.g., baldness, eyeglasses) as those
artificially produced using optimization techniques such as
DIP or CPPN. While this feature is not novel in a method-
ological sense, it can significantly streamline the process for
researchers seeking insights into what the component may
represent in the model’s decision-making process.

4. Experiments

In the previous section, we introduced the FaceMINT Li-
brary and the functionality it offers to biometric researchers.
In this section, we demonstrate the usability of the library
by evaluating it on two state-of-the-art models: the CNN-
based AdaFace and the transformer-based SwinFace. We
provide a comprehensive evaluation of how different image
parameterizations affect the interpretability of activation
maximization techniques. Next, we assess the efficiency of
sparse autoencoders in obtaining sparse representations, and
how interpretable they are. Finally, we present insightful
interpretations of neurons in those recognition models.

P. Rot et al.: Preprint submitted to Elsevier
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Table 3

Demonstration of the usability of FaceMINT in visualizing various components of biometric models, specifically AdaFace and
SwinFace. The visualization focuses on the last layer, an early channel, and an arbitrary neuron, employing different image
parameterizations (DIP, CPPN, FFT, and RGB) to guide the visualization.
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4.1. Datasets and Image Preprocessing

In our experiments, we use the largest publicly available
face recognition dataset, Glint360K, which is composed of
several large-scale datasets [1]. State-of-the-art face recogni-
tion models are typically trained on pre-aligned face images
and are known to be sensitive to misalignment. To extract
templates x, we first align all face images using the MTCNN
keypoint detector [53] and downscale them to 112 X 112
pixels. We then extract the face templates for all images in
advance using two state-of-the-art face recognition models:
the CNN-based AdaFace and the transformer-based Swin-
Face. We selected these models to demonstrate the ability
of mechanistic interpretability to generate meaningful in-
sights for both types of model architectures: CNN-based and
transformer-based. This approach significantly speeds up the
training of the autoencoders, as it eliminates the need to run
the face recognition model during training.

4.2. Input Parametrizations

When optimizing activation maximization, researchers
can choose from various image parameterizations, which
guide the optimization (e.g., by imposing specific constraints
based on prior knowledge, such as facial structure) [42, 48].
In this set of experiments, we qualitatively evaluate these
methods in the context of face biometrics by manually in-
specting the produced images. We visualize the input images
by considering activation maximization with respect to an
individual neuron, a channel in the early layer, and the entire
layer in a face recognition model. We inspect how closely the
shapes in the generated images resemble those of a face, and
whether expected facial features—such as the eyes, nose, and
mouth—are present and whether the structural relationships
typically found in faces (e.g., positioning of the eyes above
the nose, etc.), are maintained in the optimized images.

4.3. Interpretability of Optimized Input Images

In this set of experiments, we qualitatively evaluate these
parameterizations in the context of face biometrics by manu-
ally inspecting the produced images. In a qualitative manner,
we assess: (i) how closely the shapes in the generated im-
ages resemble those of a face, and whether expected facial
features—such as the eyes, nose, and mouth—are present;
(i1) whether the structural relationships typically found in
faces (e.g. positioning of the eyes above the nose, etc.), are
maintained in the optimized images. This approach provides
insight into which parameterizations produce images that
are more or less interpretable within the domain of face
biometrics.

4.4. Comparison of SAEs

Each SAE has its own hyperparameters, so we ensure
a fair comparison by comparing best performing models,
which we obtain using a logarithmic grid search. An in-
dividual autoencoder training run taxes approximately 2
hours on an RTX 4090 GPU, and the total training time for
the entire grid search took approximately 3 days. For each
optimized SAE, we report || L||, || L||;, the number of alive
features, and the reconstruction error (mean square error,

MSE). The ||L]lp norm counts the non-zero activations,
showing how many features are active at a given time. The
I[L||; norm sums the absolute activations, reflecting their
overall strength. Alive features track how many features have
been activated at least once during training. Finally, MSE
measures how accurately the model reconstructs the original
input from its learned representation. After obtaining tuned
SAEs, we compare them based on visualized features and
demonstrate the usability of our approaches.

4.5. Interpretability of Original Templates Vs.
their Sparse Representations

When considering mechanistic interpretability, it is cru-
cial to assess whether training sparse representations ac-
tually helps produce more interpretable features compared
to those already present in the biometric model, which are
generally known to be highly compressed, making them
difficult to interpret. This has also been shown to be true for
language models [7]. To confirm this, we have conducted
an experiment to determine if the same applies to vision-
based face recognition models (or biometric models). We
begin by analyzing how many images from the original
dataset activate a specific neuron in the following templates:
(i) the original template, (i7) the PCA-transformed template
(baseline), and (iii) the template transformed using the SAE.
For each, we generate corresponding density histograms.
We then look for clusters of activations and try to interpret
individual neurons by examining dataset examples that max-
imize the activation of a particular feature or by analyzing
their activation maximizations.

4.6. Feature Interpretation Protocol

Once the SAEs are trained, we search for promising
interpretable features in individual sparse neurons by exam-
ining which images from Glint360k most strongly activate
each neuron. This follows established mechanistic inter-
pretability methodology from LLMs [7], where concrete
dataset examples are used to identify candidate features.
We first select neurons that are activated by a sufficiently
large number of images, as indicated by the histograms in
Figure 3. Since the total number of neurons is too large for
manual inspection (each SAE produces a sparse representa-
tion f(x) € R%-36) we sample 200 neurons from each. The
neurons to inspect are picked as described in Section 5.4: we
sample them from the medium density cluster of the feature
histograms shown in Figure 3, namely, neurons activated
[1075,1073] of the dataset (i.e., hundreds to thousands of
images). Neurons like this have enough activating images for
human annotators to discern meaningful semantic patterns,
whereas those from lower or higher density clusters tend to
have either too many or too few. Furthermore, we reject those
neurons which are solely activated by images of a single
subject. While training set memorization is a known problem
in machine learning, it is not the subject of this study, as we
are looking for generalizable learned features. Once selected,
the experimental procedure for a given neuron i is then as
follows:
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1. Pass the Glint360k images through the face recogni-
tion model to extract their biometric templates x.

2. Feed the templates x into the trained sparse autoen-
coders to obtain their sparse representations f(x).

3. Identify the dataset images that activate the neuron of
interest, i.e., those for which f(x); # 0.

4. Rank the activating images by the magnitude of their
activations f(x); in descending order.

5. Manually inspect up to 256 of the most strongly
activating images (all, if fewer are available) and
check whether the majority share a common pat-
tern. Additionally, visualize the Deep Image Prior
(DIP)—parametrized image obtained through activa-
tion maximization, which should ideally semantically
align with the recognized interpretation.

The manual inspection was independently performed by
two of the examiners, who each examined the image grids
and attempted to identify biometric features or other patterns
exhibited by the activating images of a given neuron. A neu-
ron was deemed interpretable when both examiners agreed
on its interpretation. Examples of interpretable neurons,
along with our assigned interpretations, are presented in
Table 5.

4.7. Quantitative Feature Validation

Once human-interpretable features are discovered in the
latent space of sparse autoencoders, it is necessary to eval-
uate whether these interpretations truly reflect the decision-
making process of the face recognition model. To this end,
we conduct two quantitative experiments: a feature ablation
study and a contrastive examples study.

In the feature ablation study, we semantically edit images
to remove a discovered feature while keeping the rest of
the image intact, and then measure the response of the
corresponding sparse feature. For example, if the identified
feature is “Thick glasses”, removing the glasses from a face
should cause the activation of this feature to be zero, while
all other facial attributes remain unchanged. To quantify
the effect of such semantic modifications, we report: (i)
the change in activation magnitude of the corresponding
neuron, (ii) the change in the £, norm of the face recognition
template x, to assess whether the recognition embedding is
significantly altered, (iii) the change in the £; norm of the
sparse representation f(x), to evaluate the impact on other
sparse features, which should ideally remain unaltered, and
(iv) the cosine similarity between biometric templates, to
ensure that the overall face recognition score remains high.

In the contrastive examples study, we verify whether
the discovered interpretable features align with semantic
attributes predicted by pretrained classifiers. Specifically, we
compare images that maximally activate a given feature with
those that minimally activate it, using pretrained classifiers
for facial attributes such as gender, race, or age. If the sparse
feature corresponds to a meaningful concept, the classifier

should confirm it: for example, for the feature “Infants”,
the age classifier should assign ages below two years to
the maximally activating images, whereas the minimally
activating images should receive higher predicted ages.

5. Results

5.1. Interpretability of Activation Maximizations

In this set of experiments, we tested various image pa-
rameterizations to assess their interpretability, namely DIP,
CPPN, FFT and RGB. In Table 3, we visualize activation
maximizations for both models to observe whether we obtain
meaningful results for a CNN and transformer. Specifically,
we visualize: (7) an arbitrary selected neuron in the biometric
template (first two rows), ii) last layer in the face recognition
model (third and fourth row), and iii) channel in one of the
first layers in the model (last two rows).

We observe that RGB and FFT image parametrizations
are especially helpful for early layers, which primarily en-
code low-level features like edges and simple shapes (see
last two rows). For the last layers, parametrizations that
consider face shapes (DIP and CPPN) often yield more
interpretable results in terms of face shapes. This is also
expected, as deep architectures encode high-level concepts
in the later layers, meaning that more interpretable features
(e.g., concrete shapes of the face) are encoded in the later
layers.

Note that despite the architectural differences between
the models, the considered visualizations demonstrate the
ability to gain insights into both CNN and transformer-
based models. We observe that the semantic information in
the optimized images is somewhat consistent when compar-
ing different image parametrizations (see individual rows);
however, the image quality differs significantly. The DIP
parametrization typically returns the best quality in terms of
the structure of the face, while the CPPN parametrization
usually gives more smeared-out results. FFT and RGB typ-
ically yield similar results in terms of the shape of the face
and facial features; however, the RGB values differ.

From an interpretability perspective, these methods al-
low us to understand what specific components of the net-
work activate in response to, and what they are sensitive to.
For example, channels in the early layers might be sensitive
to repeating patterns, while later layers capture more seman-
tic features, such as a big nose or a small mouth.

5.2. Optimization of SAEs

For all considered sparse autoencoders, we conducted
a grid search to optimize their respective sparsity-related
hyperparameters. For SAE and G-SAE, we varied the reg-
ularization term A over a logarithmic scale from 1072
to 107!2, running each experiment for 10 epochs on the
Glint360k dataset with both AdaFace and SwinFace fea-
tures. For JumpReLLU SAE, we performed a similar search
by adjusting the sparsity constraint imposed by the activation
function. For TopK, the sparsity was controlled by varying
the hyperparameter k, which dictates the number of retained
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Figure 3: Feature density histograms. Note the logarithmic x-axis. The original template neurons, as well as their PCA, are
fully dense. Sparse autoencoders translate this encoding into a much higher-dimensional space, which is more sparse as a result.
Most sparse autoencoders considered here are able to encode arbitrary face templates as a linear combination of ~ 100 feature

directions.

elements in the sparse representation. We tested a range
of k values from 50 to 10,000 to analyze its impact on
model performance. Results from the entire grid search
are available in the Appendix, while in Table 4, we report
only the best-performing models, focusing on near-perfect
reconstruction. The metrics included in this table are the
£l I f(x)|l;, the percentage of active neurons in the
sparse representation (% Alive), and the reconstruction
MSE. The table shows that all sparse autoencoders enforce
sparsity while maintaining low MSE, demonstrating their
ability to learn compact yet informative representations.

This suggests that sparse autoencoders effectively reduce
dimensionality while preserving essential features.

5.3. Feature Activation Comparison

In this experiment, we compare feature activation den-
sities across three scenarios: original templates, sparse rep-
resentations obtained after training (e.g., with G-SAE), and
PCA-transformed templates as a baseline. We use the origi-
nal templates as a baseline because we do not expect them to
exhibit any sparsity — in fact, according to the superposition
hypothesis [10], the learned templates represent a much
larger set of features compressed into the limited space of (in
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Table 4

Comparison of Different Sparse Autoencoders with Different
Feature Extractors. All sparse autoencoders achieve near-
perfect representation of the face templates, with varying
degrees of sparsity and utilization of the feature dictionary
space.

Feature Extractor ~Autoencoder [1£Gly IfF &Il % Alive  MSE
SAE 206 1.2117e401 64.26 0.0000

SwinF: G-SAE 301 2.4032e+02 78.12 0.0000
winrace TopK SAE 200  1.7782e+02 9423  0.0000
JumpReLU SAE 245 9.9051e+02 14.62 0.0000

SAE 445 1.9744e+4-01 94.86 0.0000

AdaFace G-SAE 342 3.1897e+02  96.28  0.0026
TopK SAE 400 2.8341e+02 98.98 0.0003

JumpReLU SAE 941 1.8338e+-03 66.52 0.0001

our case) the 512-dimensional space of the face recognition
models. Therefore, we expect on average each dimension of
the original and PCA spaces to be activated, on average, by
half of the dataset images.

The results are presented in Figure 3. For each sce-
nario, we measure the number of activated features by ap-
plying a threshold and plot density histograms to visual-
ize the activation distributions. Sparse representations are
trained to produce compact encodings, while PCA offers a
dimensionality-reduction baseline. The results are presented
as histograms with the fraction of dataset images activating a
given neuron (basis direction) on the x-axis, and the number
of neurons (basis directions) activated by a given fraction
of the dataset on the y-axis. To emphasize the sparsity
of the learned G-SAE representation, the x-axis is scaled
logarithmically.

We observe that both the original templates and PCA-
transformed templates exhibit dense feature activations across
images in the dataset. Specifically, as expected, each tem-
plate neuron and each principal component is activated, on
average, by half of the Glint360k dataset, with very low
variance.

However, when using the gated sparse autoencoder, we
successfully identify two distinct clusters: (i) a smaller dense
cluster that behaves similarly to the original template neu-
rons and their principal components, and (ii) a sparse cluster
of neurons that are, on average, activated by only a few
(10-100) images from the Glint360k dataset. This pattern is
evident for both transformer-based and CNN-based models,
making it a particularly noteworthy finding. We further
analyze clusters of activated features by examining dataset
examples that strongly activate specific features and inspect-
ing their input activation maximizations to infer meaningful
patterns. In the following experiments, we examine input
images for features that belong to either the sparse or dense
cluster.

5.4. Qualitative Feature Interpretation

Inspecting images that activate specific sparse neurons,
we offer the following observations. Sparse neurons in the
low density clusters are commonly activated by too few
images to be readily interpretable, except in cases where
the neuron corresponds to a single person from the dataset.

On the contrary, sparse neurons in the high density clusters
(i.e., those activated by over 10% of the dataset) can also be
difficult to interpret due to high amounts of distractors even
among the images that activate the given neuron with the
highest magnitude. That is to say, there are no discernible
patterns in the activating images in the overwhelming ma-
jority of these neurons we investigated. Therefore, we fo-
cus our qualitative inspection on sparse neurons that have
sufficient activating images (i.e., around 10~* of the dataset
or 1000 images), and which do not only correspond to a
single person. We summarize our findings for the AdaFace
and SwinFace sparse autoencoders in Table 5. We note
that even within the limited set of sparse neurons we were
able to interpret, there are many concepts shared between
both face recognition networks (which do not share the
same training set), which points to a degree of instrumental
convergence [3] between the two given the same abstract
training objective (face analysis) despite differences in net-
work architecture, loss function, and training set.

For some of the highlighted neurons, we were able to
produce images of the same concept using input image
optimization with our differentiable image parametrization
implementations. This serves as additional validation of the
template feature direction actually encoding the concept in
question. We note that qualitatively, the optimized input
images for feature directions found by sparse autoencoders
appear much more coherent that the input images obtained
for individual basis neurons shown in Figure 3. However, for
the neurons where no optimized input image is displayed, we
were unable to generate a coherent image with the methods
presented here. This was also apparent during the optimiza-
tion procedure — during successful optimization runs, the
neuron activation loss was far lower than unsuccessful ones.
This also shows the input optimization approach is sound
and meaningful, but not universally applicable. On average,
this happened with around 20% of the (randomly sampled)
AdaFace feature directions, and around 75% of the Swin-
Face feature directions. This implies that the CNN-based
AdaFace model is more amenable to output maximization
via input optimization than the transformer-based SwinFace
model, which makes sense as the grid-based image prior is
inherently represented in convolutional networks, whereas it
is learned in transformers.

5.5. Survey

In order to quantitatively verify whether our interpre-
tations of the latent neurons and DIP-optimized images
presented in the previous section are valid, we have con-
ducted a survey where we asked the participants to, in their
own words, identify commonalities between the maximally
activating images for each of the neurons presented in Table
5. Furthermore, the participants were also asked to evaluate
whether the corresponding DIP-optimized image represents
the same semantic concept as the one they identified as being
common to the maximally identifying image. The number
of questions in the survey was limited to 14 to encourage
thorough participation.
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Table 5
Qualitative interpretation of AdaFace and SwinFace feature directions found with sparse autoencoders.
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The survey had a total of N = 89 responses. Of those, 52
identified as women, and 37 identified as men. Furthermore,
9 of the participants identified as experts in the field of
biometrics, whereas the rest did not. Participants in the
survey were solicited within the authors’ respective research
groups and social media circles.

We present the results of the survey in Table 6. For each
of the latent autoencoder features considered, we measured
the following:

e Concept agreement rate. As the respondents had to
describe the semantic concept represented by each set
of images, we considered a given response to “agree”
with our assessment if it mentioned a similar concept.
As an example, we marked the AdaFace JumpReLU
neuron 3756 as corresponding to the “Infants only”
feature. A typical response to the same set of images
which we marked as agreeing is, “They all look very
young”.

e Conditional DIP agreement. Of the respondents that
identified the same underlying concept as our inter-
pretation, we measure the share that agreed with the
statement “the DIP optimized image represents the
same semantic concept’.

Based on the results of the survey, we note that for most
of the features considered, the majority of the respondents
agree and identify the images as representing the same
semantic concepts. For all of the images considered, the rate
of concept agreement is above random chance. We also note
that there is a degree of correlation (p = 0.455,p = 0.16)
between the rate of concept agreement for a given feature
and whether we were able to obtain a DIP image for it.
This suggests that human-identifiable features are also more
amenable to optimization-based optimization by our library.

We noticed no statistically significant correlation be-
tween the responses and the age, gender, or biometrics
expertise of the respondents.

5.6. Feature Ablation Study

In this set of experiments, we examine the extent to
which the identified interpretations are meaningful and
whether they correspond to actual factors in the model’s
decision-making process. We evaluate how the activation of
an individual neuron in the sparse representation changes
when the feature we identified it as encoding is altered
through semantic image editing. We have edited the input
images to this end, while ensuring that all other attributes
remained unchanged. Concretely, for the feature “Older
men, beards” we have removed the beards; for the “Bald
white men” feature, we added hair; for the “Baseball caps”
we removed the caps; and for the “Eyeglasses” feature we
removed the glasses; for the “Bindi” feature we removed the
bindi. This controlled manipulation enables us to directly
test whether modifying the images leads to corresponding
change in neuron activation, thereby providing evidence as
to whether the discovered interpretations reflect the model’s

Table 6

The results of our concept-agreement survey. The columns
present the fraction of responses agreeing with our feature
identification, and, conditional on concept agreement, the
fraction of responses that consider the DIP-optimized image
of a given concept to represent it well.

Feature name P(agree.) P(agreep,plagree.)
Infants 0.977 1.000
Caricatures, comics 0.989 1.000
Overweight 0.596 n/a
Older men, beards 0.977 0.865
Young male Asians 0.955 0.882
Bindi 0.888 0.468
Bald white men 0.977 0.701
Squinting 0.247 0.571
Large forehead 0.169 n/a
Mouth obstructed 0.955 n/a
Red cheeks 0.191 0.666

predictions. We observed how this changes the biometric
template, and how the image manipulation affects the rest
of the sparse representation. Concrete examples of semantic
image editing are provided in Figure 4. Note that we edited
only the attributes corresponding to the interpretation, while
leaving all others intact.

en, beard:

Olde

g

Figure 4: Semantic edits of input images for four discovered
features. Each panel shows eight examples, with the original
(top row) and edited images (bottom row).

The results with representative examples of these se-
mantic edits, together with the presence or absence of each
feature, are provided in Table 7.
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Table 7

Results of our feature ablation study. We report the activation
magnitude of the autoencoder associated with a given feature
given its presence or artificial absence. We also report the
norms of the face recognition templates derived from the
original and edited images as the /, norms of the autoencoder
latent vectors, and the cosine similarity between the face
recognition templates of the original and edited images. The
confidence intervals are reported as y + o.

Feature Presence Activation [IxIl, £y Cos. sim.
E’:‘j 1.67+0.41 21.8+0.88 942+1.0
Older men, beards =4 0.73 +£0.07
:' 0.00+£0.00 223+1.3 940 + 0.5
[’ >4
E 047 +0.03 209+24 199 +9
Bald white men - 0.75 +0.08
@k 0.02+0.04 203+25 199+10.2
;; 1.52+041 19.1+£39 942+05
Baseball caps . 0.68 +0.22
u 0.00+0.00 193+22 941+03
@ 0.17+0.04 136+0.1 302 +2
Eyeglasses - 0.88 +0.09
ﬁ 0.002+0.01 1.40+0.11 300 +2
7
. 1.73+£0.34 248+1.62 942+0.6
Bindi 0.58 +0.21
. 039+041 246+1.67 941+038
1.12+0.66 17.6+8.32 665 + 340
Overall X 008+0.15 17.6+829 6644340 O 72%010

For the “Bindi” feature, we used 62 original images and
62 corresponding edited images with the bindi removed. For
the other features, which require more manual effort to edit,
we used 16 original images and 16 corresponding edited
images with the feature removed. We report the results in
terms of the following quantitative metrics:

1. Sparse neuron activation of the original and edited
images, which directly shows us the difference in acti-
vation magnitude if we remove the identified feature.

2. Biometric template norm, ||x||,, of both the original
and edited images. In both AdaFace and SwinFace, the
template norm correlates to image sample quality due
to the nature of the training algorithm used.

3. L norm of the sparse representation of the original
and edited images. Significant change here indicates
that the sparse space is more entangled than desired.

4. Cosine similarities of the biometric templates f(x)
between each pair of original and edited images. Here,
a low cosine similarity would mean that the under-
lying face recognition models no longer recognize

the edited image as representing the same person,
which would indicate our image editing has ruined the
image.

The results in Table 7 show that we can cause the inter-
preted neurons to deactivate using selective image editing, as
the mean neuron activation is always lower over the edited
images. Furthermore, the template norms show that the
face recognition models consider the edited images to still
represent high quality biometric samples, as the change is
minimal. In addition, the cosine similarities between original
and edited images are above the recognition thresholds for
both models (0.25 for AdaFace and 0.2 for SwinFace), which
means the edited images are still recognized as the same
person, indicating that the edited images retained most of
the identity-related information. Most importantly, the L,
norms of the sparse representations show the autoencoders
give us highly disentangled representations, as editing the
images, in most cases, results in the L norm dropping by 1.
This means only the interpreted neuron has been deactivated,
whereas the rest are still activated in the edited images.

5.7. Contrastive Examples

In this set of experiments, our goal is to analyze images
that maximally and minimally activate a given discovered
feature, and to validate whether human interpretations of
these features align with labels predicted by pretrained clas-
sifiers. For each feature, we select 256 images that max-
imally activate it and 256 images that minimally activate
it. We first present concrete examples those image sets for
selected feature interpretations in Figures 5—10, arranged on
16X 16 grids. Figure 5 presents images for the feature “Cari-
catures, comics.” In all maximally activating images, there is
not a single photorealistic example, whereas the minimally
activating set contains only realistic images. Figure 6 shows
images for the feature “Bald white men,” where almost all
images correspond to this description, with only rare distrac-
tors. The images for the feature “Overweights” are presented
in Figure 7, where all maximally activating images exhibit a
wider facial morphology, whereas the minimally activating
examples show thinner faces. Figure 8 shows images for the
feature “Baseball caps,” where in all maximally activating
images the person wears a baseball cap, whereas in the
minimally activating images there is not a single baseball
cap. Figure 9 shows images for the feature “Older men,
beards,” where in all maximally activating instances the
description matches; in contrast, among the minimally acti-
vating images, no such combination occurs (there are cases
of older men but without beards, and vice versa). For the
feature “Infants” in Figure 10, we observe that all maximally
activating images conform to this interpretation, while there
is not a single infant among the minimally activating images.
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Figure 5: “Caricatures, comics”: maximal (top) and Figure 6: “Bald white men”: maximal (top) and
minimal (bottom) actlvatlons minimal (bottom) actlvatlons
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Figure 7: “Overweight”: maximal (left) and minimal (right) activations.
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Figure 10: “Infants”: maximal (left) and minimal (right) activations.
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Table 8

Inspecting variability of other discernible patterns within max-
imally and minimally activating images in the contrastive
examples experiment. For each feature, we report the number
of distinct subjects, Max. ID repeats (maximum images from
a single identity), and yaw pose statistics.

Set Feature # subjects Ma);.ezl;é"smgs Yaw (deg.)
Caricatures, comics 132 16 +2.14 + 13.88
Bald White men 246 3 +1.10+17.39
" Baseball caps 108 61 +1.21 +28.29
& Older men, beards 65 77 —1.22 +13.37
{E" Bindi 41 92 —0.44 + 18.53
"o Overweight 87 31 +2.32 + 15.66
£ Infants 122 8 +0.46 + 14.01
2 Young male Asians 50 47 +2.83 +21.14
S Red cheeks 230 6 +1.43 +19.43
> Dark Hair 71 106 +1.70 + 16.83
‘E" Arab headdress 165 15 +1.07 £ 17.30
‘% Large Forehead 233 5 +2.36 + 18.46
=  Mouth Obstructed 234 4 +3.85 +18.53
Nasolabial Folds 225 7 —0.02 + 18.25
Squinting 170 8 +0.36 +17.13
Eyeglasses 128 26 +3.07 +20.51
Aggregated (4 + o) 144.19 + 69.80 32.00  33.12 +1.30 « 18.04
Caricatures, comics 201 12 +2.56 + 18.77
Bald White men 209 11 +0.18 +£27.98
Baseball caps 211 6 +0.27 +20.11
?D Older men, beards 206 9 +2.60 + 19.63
g  Young male Asians 213 5 +1.65 + 18.48
‘w Overweight 201 9 +0.96 + 20.06
£ Infants 216 5 +0.68 +20.06
2 Young male Asians 199 10 +3.92 + 16.46
G Red cheeks 184 13 +1.06 + 19.82
> Dark Hair 199 13 +1.35 + 18.56
‘E  Arab headdress 204 5 +3.02 + 18.60
‘£ Large Forehead 163 25 +0.35 +17.76
=  Mouth Obstructed 205 6 +0.68 +22.01
Nasolabial Folds 171 15 +4.70 + 16.81
Squinting 181 12 +1.48 +18.27
Eyeglasses 177 24 +0.18 +21.89
Aggregated (4 +0) 19625+1549 11.25+590 +1.60+19.70

We then apply relevant open-source pretrained models
depending on the semantic meaning of the feature. For
features that are expected to encode age (e.g., “Infants”,
“Older men, beards”, or “Young male Asians”), we use the
FairFace [16] age classifier to label both sets of images and
compare distributions via histograms. As the “Young male
Asians” feature should also capture race and gender, we
additionally apply the DeepFace [40] classifier to predict
those attributes on both sets.

The results for demographic features, evaluated with age,
gender, and ethnicity classifiers, are shown in Figure 12. For
the feature “Young male Asian,” panel (a) shows that 250 of
265 maximally activating images (red bars) were classified
as Asian (using DeepFace), while the minimally activating
images (blue bars) reflect the general Glint360k distribution
(mostly White, fewer Asian, and others). Notably, the Asian
predictions in the minimally activating images do not align
with the other attributes (not young, not male), supporting
the interpretation. Panel (b) confirms the gender aspect using
DeepFace classifier: the maximally activating images are

predominantly male, while the minimally activating im-
ages show a more balanced gender distribution. Panel (c)
validates the age component using FairFace classifier: all
maximally activating images are under 29, whereas only
three of the minimally activating images are under 19. The
remaining minimally activating images under 29 lack the
additional attributes (gender and race), further confirming
the feature’s interpretation. Panel (d) shows results for the
feature “Infants,” evaluated with an age classifier. Among the
maximally activating images, 239 are classified as 0-2 years
old and the remaining 17 fall into the 3-9 years bucket; how-
ever, none of these images classified older than 3. No images
with maximal activation are assigned to higher age groups,
thereby confirming the interpretation. In contrast, none of
the minimally activating images are classified as 0-2, with
the majority assigned to ages above 20. Panel (e) presents
age histograms for the feature “Older men, beards.” All
maximally activating images are classified as over 60 years,
supporting the interpretation of “Old.” Minimally activating
images largely follow the background dataset distribution,
and importantly, none of the few images classified as older
than 60 contain beards. Panel (f) shows the race distribution
for the feature ‘“Bald white men,” where the majority of
maximally activating images are classified as White, again
validating the assigned interpretation.

For attributes where no reliable pretrained classifier is
available for tightly cropped face images, we use the CLIP
model [33]. In this case, we formulate appropriate text
prompts representing alternative classes and compute sim-
ilarity scores between image embeddings and averaged text
embeddings. In Figure 11, we present histograms for non-
demographic attributes, where we employ the state-of-the-
art CLIP model [33] in a zero-shot setting using descriptive
prompts aligned with the interpretations. After applying a
softmax, we obtain class probabilities. For the feature “Car-
icatures, comics,” for instance, we use positive prompts such
as “a comic-style drawing of a face,” “a cartoon drawing of
a face,” and “an illustration of a face”, and contrast them
with negative prompts such as “a real photo of a human
face,” and “a photographic portrait of a person”

Panel (a) shows the probability histogram for the fea-
ture “Caricatures, comics.” With a threshold of 0.2, all
maximally activating images fall below the cutoff, while
only 9 minimally activating images do so, quantitatively
confirming the interpretation. Panel (b) considers the feature
“Overweight.” A threshold of 0.8 separates all maximally
activating images, with only 2 minimally activating images
exceeding this value, again supporting the interpretation.
Panel (c) presents the feature “Baseball caps.” Using a
threshold of 0.7, 234 maximally activating images reach
probabilities between 0.8 and 1, though here the separation
shows somewhat greater overlap between maximally and
minimally activating images.

We have also investigated whether the discovered in-
terpretable features also correlate with other discernible
patterns such as pose, illumination, background, and identity
within the positive-activating samples as opposed to the
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(a) Probability histogram: real vs. drawn for (b) Probability histogram for “Overweight” (c) Probability histogram: presence of
“Caricatures, comics” feature. feature. “Baseball caps” feature.

Figure 11: Examples of images that maximally and minimally activate discovered interpretable features, shown alongside
histograms of the predicted probabilities for those features. Panel (a) illustrates the “Caricatures, comics’ feature, panel (b)
corresponds to “Overweight,” and panel (c) to “Baseball caps.” The probabilities were obtained using a pretrained CLIP model in
a zero-shot setting, where descriptive prompts were aligned with interpretations from our human study, considering 256 maximal
and 256 minimal images per feature.

dataset means and negative-activating samples. We recorded image parametrizations, such as DIP, CPPN, FFT, and RGB,
the number of different identities present in the 256 maxi- along with regularization functions to guide optimization.
mally and minimally activating images for each feature. Our ~ We observed that DIP and CPPN are particularly effective
results, which are presented in Table 8, show that a set of  for interpreting neurons in the deeper layers of the network,
maximally activating images on average contains images of  as their priors favor input images resembling facial shapes. In
144 + 70 subjects, whereas the negative sets contain images contrast, RGB and FFT exhibit some structural similarities
of 196 + 15 subjects, which is also close to the dataset mean with DIP and CPPN but are more useful for understanding
for a random sample of 256 images. This shows that our earlier layers, which typically encode low-level features such
interpretable features are marginally more ID-focused than a as basic shapes rather than high-level concepts.

random image sample, but not significantly so. Furthermore, We have also evaluated the library’s sparse autoencoder
the negative activating samples are representative of a ran- implementations, namely G-SAE, TopK SAE, JumpReLLU
dom dataset sample, as expected. SAE, and vanilla SAE on face recognition models. We

We have also used the SynergyNet 3D face model [51] considered distinct architectures, the CNN-based AdaFace
for yaw pose regression. We found no statistically signif- model and the transformer-based SwinFace model. Our

icant differences between the yaw pose distributions of  experiments demonstrate that sparse autoencoders produces
maximally- and minimally- activating images for any of the sparse representations with lower activation density com-
features considered. We were also unable to identify any pared to the denser activations observed in original tem-
other apparent pattern regarding background or illumination. plates and their PCA-transformed baselines. These results
highlight the library’s potential for advancing research in
interpretable biometric systems using mechanistic inter-
pretability.

In this paper, we presented FaceMINT Library, a tool Extensive experimentation attempting to interpret the
designed to provide state-of-the-art methods for mechanistic SwinFace and AdaFace models using our library have shown
interpretability in biometric research. The library facilitates AdaFace to be much more readily interpretable, measured by
rapid testing of (face) recognition models in a plug-and- success in training sparse autoencoders, as well as our exper-
play manner by offering objective functions for activation  iments with feature interpretation through dataset search and
maximization, which can target neurons, layers, channels,  input image optimization. We hypothesize that this might
or their combinations. To support this, it includes multiple  be due to the inherent architectural differences between the

6. Conclusion
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two models and the way they interact with the SAE and  to the two face recognition models considered remains to be
DIP optimization processes - i.e., the structural image prior  explored in future work.

present in the CNN-based Adaface as opposed to the learned

attention structure of the transformer-based Swinface. How-

ever, whether this is a limitation of our library or inherent
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Figure 12: Examples of images that maximally and minimally activate selected sparse latent features, alongside demographic
classifier outputs (shown as histograms). For each feature, we use 256 maximally and 256 minimally activating images,
processed with DeepFace (race, gender) and FairFace (age). The top row illustrates the “Young Male Asians” feature with
race, gender, and age predictions. The bottom row shows age distributions for “Infants” and “Older Men with Beards,” real
vs. drawn probabilities for “Caricatures/Comics,” and race predictions for “Bald White Men.”
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The sparse autoencoders themselves capture effectively
all of the information encoded in the templates of the face
recognition models, as in the paper, we considered SAEs
that achieve a zero reconstruction loss. However, as we
have noted in the experimental protocol, relatively few of
the neurons in the sparse autoencoder activation space have
readily apparent interpretations. This is still an improvement
on the original template space, where zero of the activation
basis directions are interpretable by default, as the model
architecture, the training objectives, and the optimization
algorithms are known to encourage superposition [10] or
polysemanticity, where each neuron is used to represent mul-
tiple concepts. Sparse autoencoders have been to a degree
successfully introduced to reverse this process.

In the future, this library can be also extended to support
additional biometric modalities, such as iris, sclera, peri-
ocular region, and palmprint recognition, as well as newer
model architectures, including diffusion-based models and
those designed for multi-modal fusion. We also plan to
investigate cross-architecture robustness of discovered fea-
tures. In particular, we plan to assess whether different face
recognition models encode semantically aligned attributes
(e.g., “beard”) in a similar manner, and, if so, whether these
features exhibit comparable neuron activations.
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Appendix

Grid Search to Obtain Optimal SAEs

FaceMINT Library

This section presents the grid search results for optimizing the SAE, G-SAE, TopK SAE, and JumpReLLU SAE models.
Table 9 highlights key trends. For SAE, 4 = 10~ offers the best balance of sparsity and reconstruction. G-SAE is more
sensitive, with optimal A at 1078 (SwinFace) and 10~ (AdaFace), beyond which activations vanishes. TopK SAE improves
with increasing k, peaking at 200 (SwinFace) and 400 (AdaFace), indicating different optimal sparsity levels. JumpReL.U
SAE enforces the strongest sparsification, with best 4 at 10~7 (SwinFace) and 10~8 (AdaFace). Overall, AdaFace embeddings
require more active neurons than SwinFace, suggesting structural encoding differences.

Table 9: Grid search to obtain optimal SAE hyper parameters for SwinFace and AdaFace.

SwinFace AdaFace

Autoencoder Hyperparameters ||x||, 114 % Alive ~ MSE [Ix1lo [11l4 % Alive  MSE
A=10"12 1101  5.6563e+02 97.55 0.0000 25280 4.0387e+03 46.03  0.0000

A=10"1 1034 5.5413e+02 98.58  0.0000 25364 4.0213e+03 47.06  0.0000

A=10710 1093  5.6749e+02 99.37  0.0000 25002 3.7744e+03 46.81 0.0000

A=10""° 1048  5.5845e+02 99.00  0.0000 25240 3.7992e+03 46.90  0.0000

A=1078 937 5.3978e+02 99.51 0.0000 25157 3.6978e+03 50.31 0.0000

SAE A=107"7 628 4.4249e+02 99.67 0.0000 15386 1.2613e+03 100.00 0.0002
A=10"° 336 1.7482e+02  79.73  0.0000 1453 3.2418e+02  100.00  0.0000

A=1073 242 3.3432¢+01 41.82  0.0000 597 5.6230e+01 96.48  0.0000

A=10"4 206 1.2117e4+01  64.26  0.0000 445 1.9744e+01  94.86  0.0000

A=10"3 205 5.8390e+00 65.40  0.0000 406 9.1209e+00 37.32  0.0002

A=1072 52 4.0881e+00 7.71 0.5857 0 2.0000e-04 88.13  0.9109

A=10"12 8354  1.6660e+03 13.11 0.0000 20097 2.9403e+03 31.90  0.0000

A=10"1 8442  1.5754e+03 13.26  0.0000 20200 2.5368e+03 32.66  0.0000

A=10"10 7282  1.2878e+03 13.94  0.0000 19732 1.9847e¢+03 39.00  0.0000

A=10"° 4251  5.7744e+02 92.25 0.0002 7848  9.4433e+02 31.03  0.0003

A=10"8 301  2.4032¢+02  78.12  0.0000 635 3.2999¢+02 85.99  0.0000

GSAE A=10""7 235 2.3401e+02  71.25  0.0008 342 3.1897e+02  96.28  0.0026
A=10"° 178 1.3522e+02 3541 0.0861 241 1.2739e+02 88.75  0.1051

A=107° 0 3.7000e-03 93.83  0.9149 0 1.1300e-02 99.86 09111

A=10"* 0 2.8000e-03 92.86  0.9160 0 4.3000e-03 96.95 0.9142

A=1073 0 7.0000e-04 64.09  0.9259 0 9.0000e-04 69.81 0.9352

A=1072 0 1.0000e-04 14.04  0.9343 0 1.0000e-04 13.68  0.9460

k=50 50 6.5568e+01 5249  0.1704 50 6.3381e+01 99.82  0.2189

k =100 100 1.7362e+02 0.44 0.0605 100 9.7253e+01 97.15 0.1485

k =200 200 1.7782e+02  94.23  0.0000 200 1.5276e+02 84.64  0.0961

k =300 300 2.1113e+02 95.97  0.0000 300 2.2491e+02  93.63  0.0304

k =400 400 2.2894e+02 96.17 0.0000 400 2.8341e+02 98.98  0.0003

TopK SAE k=500 500 2.4318e+02 87.58  0.0000 500 3.0519e+02  98.74  0.0000
k = 600 600 2.5373e+02 88.48  0.0000 600 3.1671e+02  99.54  0.0000

k =800 800 2.7411e+02 96.30  0.0000 800 3.2948e+02  96.32  0.0000

k = 1000 1000  2.9171e+02 97.88  0.0000 1000 3.3428¢+02  95.94  0.0000

k = 2000 2000  3.2802e+02 97.76  0.0000 2000 5.2316e+02  93.33  0.0000

k = 5000 5000 4.2823e+02 97.16  0.0000 5000 5.7167e+02  94.70  0.0000

k = 10000 10000 6.1051e+02 94.17  0.0000 10000 7.0667e+02  95.50  0.0000

A=10"12 544  4.3137e+02 91.36  0.0000 16237 1.5694e¢+03 100.00  0.0002

A=10"1 480  4.2009e+02  76.76  0.0000 3733  8.2975e+02  99.92  0.0000

A=10"10 471 3.9628e+02 55.80  0.0000 970 5.8778e+02  93.76  0.0000

A=10"° 452 4.5127e+02 26.56  0.0000 660 5.6993e+02  59.04  0.0000

A=1078 586 1.3118e+03 42.07  0.0000 941 1.8338¢+03  66.52  0.0001

JumpReLU SAE A=10"7 245 9.9051e+02 14.62  0.0000 371  12659%+03  7.79  0.0030
A=10"° 142 4.8077e+02 5.86 0.0624 130 3.5814e+02 4.76 0.2865

=107 3 3.1228e+00 1.12 0.8411 1 4.7380e-01 0.91 0.8940

A=10"* 0 3.4100e-02 0.44 0.9105 0 1.7100e-02 0.36 0.9082

A=1073 0 7.2000e-03 0.23 0.9131 0 3.4000e-03 0.14 0.9101

A=10"2 0 2.3000e-03 0.11 0.9139 0 1.2000e-03 0.08 0.9106
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Survey Responses

In Table 10 and Table 13, we present examples of agreeing and disagreeing responses from the survey, corresponding to
our annotations of concepts for the observed common features. For clarity, Table 10 contains primarily demographic-related
attributes (e.g., age, gender, ethnicity), while Table 13 shows examples for non-demographic attributes.

Table 10: Examples of survey responses for the first set of interpreted feature directions.

Infants Comics Overweight Older men, beards Young male Asians Bindi

Agreeing Babies; baby face; | Chinese cartoons; | They all look fat; | Older man with | East Asian | Indian women; red
they are all kids; | anime/drawn they are fat; too | beard; old man | phenotype; asian | dot on forehead; In-
baby; very young | characters; drawings; | much  body fat; | beard; old white | boys; K-pop stars; | dian older women;
kids (1.5 yrs) digital drawings; | people with more | skin + beard; white | young asian men; | women with a bindi;

comic characters weight; overweight beards; older men | asian guys symbol on forehead
with white beards
Disagreeing | I don’t know Small nose Women and feminine | N/A Short hair Unknown
men; small eyes

Figure 13: Examples of survey responses for the remaining interpreted feature directions.

Bald White men Squinting Large forehead Mouth obstructed Red cheeks
Agreeing Baldness; bald; they | Closed/almost closed | Elliptical head shape | All have something | They are all
are all bald; white | eyes; eyes not seen; in the mouth; | blushing; blushing;
bald men; bald white | squinting into cam- instrument/mic near | pronounced red
guys era; eyes not fully face; object near | cheeks
visible; hidden eyes mouth;  something
in front/in mouth;
something near
mouths
Disagreeing | N/A Nonchalant; people | Weird stare; 1 got | Same expression Open mouth; thin
in their 30s; light hair | nothing; direct eye eyebrows; white
contact; pointy nose; teenagers?;  Anglo
dark eyes phenotype; uncanny
valley
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