
StructFormer: Structure-Consistent Face De-Identification under Strong

Privacy Constraints*

Haini Zhu1, Deepak K. Jain1,∗, Xudong Zhao1, Muyu Li1, Vitomir Štruc2, Sumarga K. Sah Tyagi3
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Abstract

The widespread use of face data in computer vision

raises significant concerns about privacy and identity leak-

age. Conventional anonymization techniques, such as blur-

ring or masking, often degrade facial structure and ex-

pression, while existing generative methods may still retain

identifiable cues when evaluated against strong face recog-

nition systems. To address these limitations, we propose

StructFormer, a structure-consistent face de-identification

framework based on a Transformer–GAN generator. Struct-

Former adopts a dual-stream design in which facial land-

marks and masks provide explicit structural priors that are

fused with appearance features through a Structure-Aware

Attention Fusion module. This enables the preservation

of head pose, facial layout, and expression while modify-

ing identity-related appearance. A privacy control coeffi-

cient further allows continuous adjustment of anonymiza-

tion strength without architectural changes. Experiments

on LFW, CelebA, and CelebA-HQ demonstrate that Struct-

Former achieves a favorable balance between visual fi-

delity and privacy protection, maintaining high face detec-

tion rates (approximately 99%–100%) and competitive FID

scores, while substantially reducing re-identification per-

formance under strong FaceNet and ArcFace attackers, with

match rates as low as 0.03% on CelebA-HQ.

1. Introduction

The increasing availability of large-scale face data has en-

abled rapid progress in face analysis and recognition sys-

tems, while simultaneously raising serious concerns about

privacy and identity leakage. Regulatory frameworks such

as the GDPR, along with the removal of several widely used

face datasets due to privacy considerations [11, 15], reflect

a growing recognition that facial identity constitutes sensi-

tive biometric information. As a result, there is a pressing

need for effective face de-identification methods that sup-

press identity information while preserving visual content
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required for legitimate analysis and evaluation.

A central challenge in face de-identification stems from

the strength of modern face recognition (FR) models. Even

on high-quality, well-aligned face images, state-of-the-art

FR systems can reliably extract identity cues from subtle

combinations of texture, geometry, and expression. As a

result, effective de-identification must operate under realis-

tic attack scenarios, in which naive privacy protections are

insufficient. At the same time, facial data often remains

valuable only if key semantic properties, such as pose, ex-

pression, and overall facial structure, are preserved. Face

de-identification therefore entails a fundamental trade-off,

i.e., suppressing identity-related information while retain-

ing structural and semantic facial attributes required for

downstream analysis and evaluation [40].

Traditional anonymization techniques, such as blur-

ring [1], occlusion [6], or downsampling [26], attempt to

address this trade-off through coarse visual obfuscation.

While simple to deploy, such approaches offer limited ro-

bustness against modern FR systems and learning-based re-

construction attacks [45]. More importantly, these transfor-

mations indiscriminately degrade both identity-related ap-

pearance and structure-related cues, frequently distorting

facial geometry and expression, and substantially reduc-

ing the utility of the anonymized data for downstream vi-

sion tasks. These limitations have motivated the adoption of

generative approaches that aim to explicitly modify identity

while preserving other facial attributes.

Recent advances in deep generative modeling, includ-

ing StyleGAN-based architectures [20–22] and diffusion

models [8, 14, 44], have demonstrated impressive capacity

for high-fidelity face synthesis. These models provide new

opportunities for fine-grained anonymization by replacing

the original identity with synthesized surrogates. How-

ever, directly applying large generative models to face de-

identification remains challenging. Diffusion-based meth-

ods typically require costly iterative sampling, while large

generative models may exhibit memorization effects, repro-

ducing identity traits or stylistic patterns from the training

data and thereby increasing the risk of identity leakage or

unauthorized mimicry [3]. More broadly, many existing



Figure 1. Illustration of the impact of the privacy parameter (pp) of StructFormer. Each row shows de-identification results for one test

subject under different privacy parameter settings. Higher pp values remove more identity information, while still preserving the overall

facial structure and expression relatively well. The four columns (from left to right) correspond to pp = 0, 0.3, 0.5, and 0.8, respectively.

generative anonymization methods struggle to reliably dis-

entangle identity-related appearance from facial structure,

particularly under strong recognition attacks [48] leading to

significant re-identification risk.

Convolutional GAN-based anonymization models offer

the advantage of efficient single-step inference, but often

lack explicit mechanisms to enforce global geometric con-

sistency when identity cues are intentionally altered. Due

to their limited receptive fields, such models may introduce

structural distortions, including misaligned facial compo-

nents or corrupted expressions, which degrade visual qual-

ity and compromise the usability of anonymized faces.

These observations highlight the need for de-identification

frameworks capable of enforcing holistic geometric consis-

tency and explicitly preserving structure-related informa-

tion, such as pose and expression, while modifying identity-

related texture and appearance.

In this work, we propose StructFormer, a novel struc-

ture-consistent face de-identification framework that meets

these challenges. StructFormer is built on a Transformer–

GAN generator and incorporates explicit structural priors in

the form of facial landmarks and masks. Through an inno-

vative Structure-Aware Attention Fusion (SAAF) module,

geometric information is injected into the generative pro-

cess of StructFormer to constrain identity transformation

and preserve facial layout and expression. Additionally, we

also introduce a coordinated loss design that balances con-

tent preservation with identity suppression and enables con-

tinuous control over anonymization strength, as illustrated

in Figure 1. Extensive experiments on LFW, CelebA, and

CelebA-HQ demonstrate that StructFormer achieves a fa-

vorable trade-off between visual fidelity and privacy pro-

tection, substantially reducing re-identification rates under

strong attackers, while maintaining high face detectability

and structural consistency of the de-identified facial images.

In summary, our main contributions are threefold:

• We introduce StructFormer, a Transformer–GAN based

face de-identification framework that integrates explicit

structural priors to address identity leakage under strong

face recognition attacks.

• We propose a Structure-Aware Attention Fusion (SAAF)

mechanism that injects landmark- and mask-based geo-

metric information into the generative process via cross-

attention, enabling global coordination between structure

and appearance during identity suppresion.

• We present a coordinated learning objective that sup-

ports continuous control over the privacy-utility trade-

off. Moreover, we conduct a comprehensive experimen-

tal evaluation on three standard face benchmarks against

state-of-the-art FR models to quantify identity suppres-

sion, structural fidelity, and face detectability.

2. Related Work

In this section, we briefly survey closely related work on

visual privacy and face de-identification, needed to provide

context for our work. For a more comprehensive coverage

of this field, we refer the reader to some of the existing sur-

veys available in the open literature, e.g., [28, 40, 56].

2.1. Visual Privacy and Face De­identification

The widespread use of social media platforms and mobile

cameras has led to the large-scale collection and dissemi-

nation of visual data, while simultaneously amplifying the

risk of privacy leakage. As a result, many contemporary vi-

sion datasets contain identifiable facial imagery [35, 47],

prompting the introduction of data protection regulations

such as GDPR, PDPA, and PIPA [9, 15, 53]. Since fa-

cial identity constitutes a highly sensitive biometric at-

tribute [9], protecting faces has become a central concern in

privacy-preserving computer vision. Face de-identification

(de-ID) has emerged as a practical approach for balancing

privacy protection with data utility. In contrast to com-

pletely discarding faces or applying irreversible masking,



de-ID aims to suppress identity-related information, while

preserving attributes such as pose, expression, visual fi-

delity and coarse appearance that are relevant for down-

stream analysis. The well-documented limitations of classi-

cal anonymization techniques, such as blurring, pixelation,

and occlusion, have motivated increasing interest in gen-

erative de-ID methods, which provide a more flexible and

controllable privacy–utility trade-off [40].

2.2. Traditional Anonymization of Faces

Early privacy-aware systems primarily relied on simple im-

age transformations, such as blurring, pixelation, occlusion,

or additive noise, to obscure facial identity [1, 6, 26, 38].

While easy to implement, these methods indiscriminately

degrade facial information, including pose, expression, and

skin tone, and provide limited robustness against modern

face recognition models, which can often (also through so-

called parrot-attacks) re-identify faces that appear visually

anonymized [42]. An alternative line of work draws in-

spiration from k-anonymity, exemplified by the K-Same

framework [49]. K-Same replaces an input face with the

average of its k−1 nearest neighbors in a predefined fea-

ture space, ensuring that at least k identities share the same

de-identified representation. Although more structured than

heavy masking, these averaging-based methods frequently

introduce visual artifacts and struggle to preserve fine-

grained facial structure or semantic attributes [19]. Over-

all, classical anonymization techniques are simple to deploy

but suffer from limited robustness, degraded image quality,

and poor compatibility with downstream analysis, motivat-

ing the transition to generative de-identification approaches.

2.3. Generative Face Anonymization

Generative face de-identification methods replace the orig-

inal identity with a synthesized surrogate while aiming to

preserve utility in the form of pose, expression, and scene

context, allowing anonymized data to remain useful for later

analysis [39]. Most existing approaches are based on gen-

erative adversarial networks (GANs) [10]. CIAGAN [37],

for instance, generates identity-substituted faces condi-

tioned on the source and reinserts them into the origi-

nal image, and subsequent works extend this paradigm in

various directions. AdaDeID [36] introduces controllable

anonymization strength, similarly to [41], A3GAN and RB-

GAN [53, 55] emphasize semantic attribute preservation,

Barattin et al. [2] anonymize entire datasets via latent-space

optimization, RIDDLE [30] enables reversible and diversi-

fied identities, and semantic-aware models [23] selectively

modify identity-sensitive regions. While these approaches

improve realism and attribute retention, many rely on con-

volutional architectures that offer limited global coordina-

tion, and identity leakage under strong recognition attacks

remains insufficiently characterized.

To address global structural modeling, recent works

incorporate self-attention and Transformer-based compo-

nents, including TransGAN [18], ViT-based GAN vari-

ants [29], and masked generative encoders [31]. Diffusion-

based anonymization methods, such as Diff-Privacy and

NullFace [12, 27], further improve visual fidelity but re-

quire iterative sampling and incur substantial computational

overhead. In contrast, our approach adopts a Transformer–

GAN generator augmented with explicit structural priors

and structure-aware attention, enabling stable facial geome-

try and expression preservation, while maintaining efficient

single-step inference for face de-identification.

3. Method

In this section, we introduce the main novelty of this

work,i.e., StructFormer, a structure-consistent face deiden-

tification framework designed to suppress identity informa-

tion, while maintaining consistent facial geometry and ex-

pression. Below, we first provide an overview of the pro-

posed approach, followed by an in-depth description of its’

key components and corresponding learning objective.

3.1. Overview of StructFormer

Generator Architecture. The generator of StructFormer,

illustrated in Figure 2, follows a Transformer–GAN style

encoder–decoder design and incorporates a Structure-

Aware Attention Fusion (SAAF) module. It operates on

two complementary inputs: (1) an appearance stream, con-

sisting of the source face concatenated with a binary mask,

and (2) a structural stream represented by a landmark map.

The SAAF module fuses geometric priors with appearance

features in the latent space, after which the decoder pro-

gressively upsamples the fused representation to synthesize

a de-identified face. This dual-stream formulation explic-

itly conditions generation on facial structure, helping to pre-

serve expression and fine-grained geometric details during

identity transformation.

After SAAF-based feature alignment, a residual up-

sampling decoder restores the spatial resolution. The de-

coder comprises five stages, each consisting of a main

branch, upsampling followed by two convolutional layers,

and a lightweight shortcut connection, whose outputs are

summed. This design improves geometric consistency and

mitigates artifacts commonly associated with transposed

convolutions. A self-attention layer is inserted at an inter-

mediate resolution (B × 256 × 64 × 64), where features

encode global semantic information, while remaining com-

putationally efficient. By propagating long-range spatial in-

teractions, the attention mechanism reinforces coherent fa-

cial layout and expression under strong identity suppression

constraints. Ablation results, presented later in the experi-

mental section, confirm that removing this component leads

to increased structural drift.



Figure 2. Overview of the proposed Transformer–GAN generator used in StructFormer. The architecture processes an appearance

stream (source face and mask) and a structural stream (facial landmarks), which are fused in the latent space via the proposed Structure-

Aware Attention Fusion (SAAF) module. The fused representation is then decoded by a residual upsampling decoder equipped with

lightweight self-attention blocks to synthesize a de-identified face while preserving global facial structure and expression.

Multi-scale Discriminator. StructFormer employs a multi-

scale PatchGAN discriminator [50], illustrated in Figure 3,

in place of a U-Net-style design. Multiple PatchGAN

discriminators operate at different image resolutions and

jointly evaluate the realism of generated faces. High-

resolution discriminators focus on local appearance details

around salient facial regions, while low-resolution discrim-

inators capture global facial shape and alignment, support-

ing stable synthesis when identity-related cues are modi-

fied. This multi-scale design encourages consistency across

both fine-grained texture and global facial structure, which

is critical when identity information is deliberately altered.

Joint training objectives. Beyond the adversarial objec-

tive, the model is trained with two complementary groups

of auxiliary losses: (1) content-preserving losses and (2)

identity-hiding losses. The content-preserving component

consists of a reconstruction loss and an edge-based loss that

stabilize overall appearance and geometric structure. The

identity-hiding component includes a target-guided Percep-

tual Loss and an enhanced de-identification loss, which pro-

mote separation between the source and generated identi-

ties in perceptual and embedding spaces, respectively. This

joint objective formulation enables controlled identity sup-

pression while preventing unintended degradation of facial

structure and visual fidelity. Detailed formulations and the

roles of these objectives are presented in Section 3.3.

3.2. Structure­Aware Attention Fusion (SAAF)

Dual-stream Structural Priors. The SAAF module oper-

ates on two complementary inputs: a landmark-based struc-

tural stream and a masked appearance stream. Facial land-

marks provide an explicit geometric prior encoding head

pose, contour, and coarse expression, while containing min-

imal identity-specific information. We rasterize a subset of

41 facial keypoints [24, 37] into sparse heatmaps to form

the structural stream. The appearance stream is constructed

by masking the facial region in the source image, which pre-

serves background consistency and confines identity modi-

fication to the face. For images containing multiple faces,

each face is detected and processed independently within its

corresponding bounding box.

Self-attention within Dual Streams. Both streams are flat-

tened into token sequences and processed independently us-

ing multi-head self-attention to capture long-range depen-

dencies within each modality. Given an input sequence X,

we compute

Q = XWq, K = XWk, V = XWv, (1)

followed by standard multi-head attention and a position-

wise feed-forward network, as in standard Transformer

blocks. Here, where Wq , Wk, and Wv denote learnable lin-

ear projection matrices that map input tokens to query, key,

and value representations.

Cross-attention Fusion. To inject geometric information

into appearance features, SAAF introduces a cross-attention

layer that uses appearance tokens as queries and structural

tokens as keys and values:

Xfuse = MHAtt
(

Qapp,Kstr,Vstr

)

. (2)



Figure 3. Multi-scale PatchGAN discriminator. Architecture of

the discriminator composed of three scale-specific branches, de-

noted as D1–D3, which respectively produce 14× 14, 7× 7, and

4 × 4 patch-wise real/fake score maps. This multi-scale formu-

lation enforces visual realism across both local details and global

facial structure.

The resulting update is added to the appearance stream via

a residual connection, after which the fused sequence is re-

shaped into a feature map and propagated to the next stage

of the generator. As spatial resolution decreases and chan-

nel dimensionality increases, SAAF is applied repeatedly to

progressively reinforce landmark-guided geometry.

Discussion. In contrast to simple input-level concatena-

tion of facial masks and landmarks, SAAF performs ex-

plicit alignment between appearance and structure at mul-

tiple stages of the generator. This design enables identity-

related texture to be reshaped under explicit geometric con-

straints, helping preserve facial contours and expressions

even under strong identity suppression. Empirically, this

reduces structural artifacts such as distorted mouths or col-

lapsed eye regions, as confirmed by our ablation studies.

3.3. Training Objectives

To jointly preserve facial structure and suppress identity

information during de-identification, we design the train-

ing objective around two complementary loss components:

(1) a content preservation loss, which stabilizes geometry

and appearance inherited from the source face, and (2) an

identity-hiding loss, which explicitly discourages similarity

to the source identity while enabling controlled identity su-

pression. The two losses are described in detail below.

Content Preservation Loss. Given the source face xs,

the target conditioning xt, and the generated image x̂ =
G(xs, xt) with a binary face mask m, we encourage x̂ to

follow both the global appearance and the local boundary

structure of xs. To this end, we use an edge-aware bound-

ary loss Ledge and a masked reconstruction loss Lrec.

• Edge-aware Boundary Loss. We first compute an edge-

strength map E(x) from horizontal and vertical image

gradients (e.g., Sobel filters). Starting from the face mask

m, a thin contour band b is obtained by one dilation and

one erosion, so that bij is non-zero only around the facial

boundary. The edge loss compares edge magnitudes of x̂

and xs within this band:

Ledge =

∥

∥b⊙
(

E(x̂)− E(xs)
)
∥

∥

1

∥b∥1 + ϵ
. (3)

• Masked Reconstruction Loss. Over the whole facial re-

gion, we additionally match the pixels of x̂ to those of xs

inside the mask:

Lrec =

∥

∥m⊙
(

x̂− xs

)∥

∥

1

∥m∥1 + ϵ
. (4)

• Overall Objective.

The final content preservation term is a weighted sum of

the two components:

Lcontent = λedge Ledge + λrec Lrec, (5)

where λedge and λrec balance boundary sharpness and

overall reconstruction quality.

Identity-hiding Loss. In the identity-hiding branch, we de-

note the source face by xs, the target image by xt, and the

anonymized output by x̂ = G(xs, xt). The loss combines

a VGG-based perceptual term Lperc and an ArcFace-based

identity term Lid.

• Perceptual Loss. We use a pretrained VGG19 network as

a fixed feature extractor and take activations Φl(·) from

a set of shallow, mid-level, and high-level layers. For a

privacy parameter pp ∈ [0, 1], the target feature at layer l

is

Tl =

{

Φl(xs), l ∈ Llow-mid,

(1− pp) Φl(xs) + ppΦl(xt), l ∈ Lhigh,

(6)

so that low/mid layers preserve pose and local structure

from xs, while high layers smoothly interpolate identity

cues from xt. In all experiments, pp is treated as a user-

controlled parameter that is fixed during training and in-

ference. A resized face mask Ml restricts the penalty to

the facial region, and the perceptual loss is computed as a

weighted, masked L1 distance,

Lperc =
∑

l

wl

∥

∥Ml ⊙
(

Φl(x̂)− Tl

)∥

∥

1
, (7)



encouraging sharp, structurally plausible faces while re-

ducing direct alignment to the source identity in high-

level features.

• Identity Loss. The identity loss is defined on unit-

normalized embeddings from a pretrained Arc-

Face/MobileFaceNet backbone fid(·). We measure

cosine similarity between two images a and b as

s(a, b) = fid(a)
⊤fid(b). (8)

The identity term combines a “pull” component that

encourages x̂ to approach the target identity xt and a

margin-based “push” component that forces x̂ away from

the source xs:

Lid = λpull

(

1−s(x̂, xt)
)

+λpush max
(

0, s(x̂, xs)−γ
)

,

(9)

where γ controls the minimum allowed similarity to the

source, and λpull, λpush balance attraction to the target

and repulsion from the source. In a pure de-identification

setting, one can disable the pull term by setting λpull = 0,

so that Lid only penalizes large similarity to xs.

• Overall Objective. The total identity-hiding loss is a

weighted sum of the perceptual and identity components:

Lhide = αperc Lperc + αid Lid, (10)

where αperc and αid control the trade-off between struc-

tural fidelity and identity suppression.

4. Experiments

In this section, we evaluate the proposed StructFormer

against representative state-of-the-art face de-identification

methods using standard evaluation methodology. We report

both qualitative and quantitative results across multiple face

datasets to assess visual fidelity, structural consistency, and

identity suppression. We also perform a series of ablation

studies to analyze the influence of key design factors, in-

cluding the number of training identities, the privacy con-

trol coefficient, and the perceptual loss, on the behavior of

the model.

4.1. Experimental Setup

Datasets. The CelebA dataset [33] consists of 202,599 face

images spanning 10,177 identities. We use the aligned ver-

sion, in which each image is registered to the eye midpoint,

padded, and resized to 178×218 while preserving the facial

aspect ratio, each identity contains at most 35 images. Fa-

cial landmarks used as structural priors are extracted using

the HOG-based alignment method [5]. To examine higher-

resolution settings, we additionally evaluate on CelebA-

HQ [34], a high-quality variant of CelebA, and report re-

sults on its 256 × 256 subset to illustrate the behavior of

the proposed method at increased image resolution. The

Labeled Faces in the Wild (LFW) dataset [16] comprises

over 13,000 unconstrained face images of 5,749 identities,

among which 1,680 identities have at least two samples.

We use LFW to evaluate de-ID performance and structural

preservation under in-the-wild imaging conditions.

Implementation Details. All models are implemented in

PyTorch [43] and trained on a single NVIDIA RTX 4090

GPU. During training, we use a batch size of 8 and optimize

the networks using Adam [25] with momentum parameters

β1 = 0.0 and β2 = 0.9. The learning rate follows a warm-

up followed by cosine annealing: the generator is trained

with a maximum learning rate of 4 × 10−5, while the dis-

criminator uses a max learning rate of 1 × 10−5; both are

decayed to a minimum learning rate of 1×10−6. Training is

performed for 100 epochs, with 3,044 iterations per epoch.

The overall objective is a weighted combination of the

loss terms described in Section 3.3. All loss weights are

fixed across experiments and ablation studies, with λedge =
1.5 and λrec = 3, and αperc = 0.8 and αid = 0.5.

4.2. Baselines and Performance Metrics

Baselines. We perform both quantitative and qualitative

comparisons against representative face de-identification

methods. For the quantitive evaluation of image qual-

ity and de-identification performance, we report results

on CelebA, CelebA-HQ, and LFW, and compare against

A3GAN [53], STGAN [32], Attribute-pre [19], RID-

DLE [30], L2M-GAN [51], as well as the generative base-

lines DeepPrivacy [17] and CIAGAN [37]. These methods

span a range of design choices for identity suppression and

attribute preservation. For the qualitative evaluation, we

present visual comparisons on CelebA-HQ and LFW, with

a focus on structural and expression preservation alongside

effective identity removal. In this setting, we include Deep-

Privacy [17] and CIAGAN [37] as representative state-of-

the-art generative de-identification approaches.

Performance Metrics. We evaluate the proposed method

using metrics that capture both privacy protection and vi-

sual fidelity. To quantify identity removal, we first em-

ploy FaceNet [46], pretrained on CASIA-WebFace [52]

and VGGFace2 [4], to compute a re-identification rate, de-

fined as the proportion of anonymized faces that can still

be matched to their original identities. In addition, we re-

port an ArcFace-based de-identification score [7], where a

pretrained ArcFace model is evaluated in a closed-set set-

ting by matching anonymized embeddings against a gallery

of original faces. To assess whether anonymized out-

puts remain structurally plausible and usable for down-

stream processing, we measure a face detection rate us-

ing MTCNN [54], defined as the fraction of generated im-

ages in which a face is successfully detected. An effective

anonymization method should therefore maintain a detec-

tion rate close to 100% while driving re-identification met-



Table 1. Privacy and image quality results on LFW.

Method FID↓
Detection(%) Face re-ID(%)

dlib↑ MTCNN↑ CASIA↓ VGG↓

CIA-GAN 22.07 98.14 99.89 0.17 0.91

DeepPrivacy 23.46 96.70 99.57 2.74 1.52

Attribute-pre 27.45 100.00 100.00 2.07 1.58

Ours (0.8) 8.35 99.65 100.00 1.26 1.33

Table 2. Privacy and image quality results on CelebA.

DeepPrivacy CIA-GAN L2M-GAN STGAN

FID↓ 30.12 34.95 18.83 20.14

Detection(%)↑ 87.48 91.60 92.05 91.26

AdaDeID Ours (0.0) Ours (0.3) Ours (0.8)

FID↓ 2.19 10.62 11.56 11.69

Detection(%)↑ 95.90 96.94 97.68 97.65

Figure 4. Qualitative results on the LFW dataset. For each

sample, the original image (left) and the anonymized result (right)

at pp = 0.8 are shown, illustrating robust de-identification under

unconstrained conditions.

rics toward zero. Finally, we compute the Fréchet Inception

Distance (FID) [13] over all generated images as a global

measure of visual realism and distributional quality.

4.3. Comparison to SOTA

Image Quality and De-identification. On LFW (Tab. 1),

our method achieves a favorable quality–privacy trade-off

compared with CIAGAN, DeepPrivacy, and Attribute-pre.

Face detectability remains near perfect (99.65% with Dlib

and 100.00% with MTCNN), while FID is reduced to 8.35,

substantially lower than all baselines, indicating realistic

anonymized faces with preserved structure. In the CASIA

and VGG feature spaces, using a verification threshold of

0.7, our re-identification rate is slightly higher than CIA-

GAN but clearly lower than the remaining methods, result-

ing in reduced identity leakage for comparable visual qual-

ity. On CelebA (Tab. 2), DeepPrivacy, CIAGAN, L2M-

GAN, and STGAN obtain FIDs between 18.83 and 34.95

with detection rates around 87%–92%. Across different

Figure 5. Qualitative results on CelebA-HQ. Each group shows

an original face (left) and the corresponding de-identified output

(right) generated with a privacy parameter of pp = 0.8.

Table 3. Privacy and image quality results on CelebA-HQ.

Method FID↓
Detection(%) Face re-ID(%)

dlib↑ MTCNN↑ CASIA↓ VGG↓

CIA-GAN 37.94 95.10 99.82 2.19 0.37

DeepPrivacy 32.99 92.82 99.85 3.91 1.05

Attribute-pre 29.93 98.58 100.00 2.8 1.67

RiDDLE 5.39 99.10 100.00 1.9 0.3

Ours (0.8) 7.51 99.16 100.00 0.03 0.04

privacy-control settings (e.g., pp = 0.3 and pp = 0.8),

our variants maintain FID values around 11 while increas-

ing face detection above 97%, demonstrating stable visual

quality under a larger and more diverse identity distribution.

Compared with AdaDeID, our FID is higher, but we achieve

higher face detectability and provide an explicit mecha-

nism for controlling the privacy level. On CelebA-HQ

(Tab. 3), CIAGAN, DeepPrivacy, and Attribute-pre achieve

FIDs above 29, whereas RIDDLE attains the lowest FID of

5.39. Our method reaches an FID of 7.51 at pp = 0.8, re-

maining competitive while achieving near-perfect face de-

tection (99.16% with Dlib and 100.00% with MTCNN). At

a similarity threshold of 0.6, existing methods exhibit de-

identification rates between 0.27% and 3% in the CASIA

and VGG feature spaces, with RIDDLE still yielding 1.9%

/ 0.3%. In contrast, our method reduces these rates to 0.03%

/ 0.04%, indicating substantially stronger identity suppres-

sion. Across LFW, CelebA, and CelebA-HQ, StructFormer

consistently balances visual quality, face detectability, and

identity removal, producing anonymized faces that remain

structurally intact while exhibiting minimal linkage to the

original identities under strong recognition models.

Qualitative Evaluation. Figs. 4 and 5 present qualita-

tive results on LFW and CelebA-HQ. In each group, the

left image shows the original face and the right image the

corresponding anonymized output. Across both datasets,

the generated faces remain visually plausible: head pose,

coarse facial layout, and expression are preserved, while



Figure 6. Re-identification rate versus verification thresh-

old. Re-identification performance evaluated on CelebA, LFW,

CelebA-HQ, and CASIA using FaceNet embeddings pretrained

on CASIA-WebFace and VGGFace2. The x-axis denotes the

cosine-similarity threshold and the y-axis the corresponding re-

identification rate. Across all datasets and feature spaces, the re-

identification rate drops rapidly and approaches zero for thresholds

above 0.5, indicating effective de-identification.

Table 4. Ablation results on CelebA under threshold 0.6. We vary

the number of identities (IDs) and the loss design.

Group Metric
IDs Loss

800 1200 content id

Quality FID↓ 11.72 10.72 12.06 12.56

Detection↑
dlib 97.13 96.94 96.10 95.84

MTCNN 99.97 99.97 99.97 99.95

Re-ID↓
CASIA 0.12 0.12 0.05 0.03

VGG 0.23 0.18 0.09 0.05

ArcFace 0.06 0.06 0.04 0.04

fine-grained appearance cues such as facial shape, texture,

and local details are clearly altered, resulting in a distinct

identity. Compared with LFW, CelebA-HQ samples exhibit

sharper contours and cleaner textures, consistent with their

higher resolution and lower FID scores. Nevertheless, even

on the more challenging in-the-wild LFW images, Struct-

Former produces natural-looking anonymized faces with

coherent structure and a clear visual identity shift relative to

the source. Fig. 6 shows the re-identification rate as a func-

tion of the cosine-similarity threshold on CelebA, LFW,

CelebA-HQ, and CASIA using FaceNet features trained on

CASIA and VGGFace2. Across all datasets and feature

spaces, the re-identification rate decreases rapidly with in-

creasing threshold and approaches zero for thresholds above

0.5, indicating strong identity suppression.

4.4. Ablation study

We conduct an ablation study on CelebA to analyze the

effects of three factors: (1) the number of training identi-

ties (IDs), (2) the anonymization strength pp, and (3) the

loss design. Unless stated otherwise, all settings are fixed

and evaluation is performed using a FaceNet attacker with a

threshold of 0.6. For the results reported in Table 4, we set

pp = 0 for both 800 and 1200 IDs.

Effect of the Number of Identities. Using the full loss, in-

creasing the number of training identities from 800 to 1200

leads to a modest improvement in image quality, with FID

decreasing from 11.72 to 10.72, while face detectability re-

mains stable (approximately 97% with dlib and 100% with

MTCNN). De-identification rates under CASIA, VGG, and

ArcFace attackers change only marginally (0.12/0.23/0.06

vs. 0.12/0.18/0.06), indicating limited sensitivity to identity

pool size. Based on this trade-off, we use 1200 identities as

the default configuration.

Effect of Anonymization Strength. To illustrate the effect

of anonymization strength, we vary pp ∈ {0, 0.3, 0.5, 0.8}
and visualize results on randomly selected test subjects in

Fig. 1. As pp increases, the similarity to the source iden-

tity decreases progressively, while facial structure and ex-

pression remain largely stable. This demonstrates that pp

provides effective and continuous control over identity sup-

pression without compromising structural consistency.

Effect of the Loss Design. Fixing the number of identi-

ties to 1200, we compare the full objective with two re-

duced variants: content-only and identity-only losses. Re-

moving either component degrades performance: FID in-

creases to 12.06 (content-only) and 12.56 (identity-only),

compared to 10.72 for the full model, and face detectabil-

ity decreases slightly. De-identification rates under CA-

SIA/VGG/ArcFace attackers also worsen (0.05/0.09/0.04

and 0.03/0.05/0.04, respectively), confirming that content-

preserving losses are necessary for visual quality, while

identity losses are essential for suppressing identity cues.

Their combination yields the best balance between image

quality and privacy protection.

5. Conclusion

We introduced StructFormer, a structure-aware face de-

identification framework based on a Transformer–GAN

generator. By decoupling structural priors from appear-

ance features and integrating them via structure-aware

attention, StructFormer preserves head pose, facial lay-

out, and expression while effectively suppressing identity-

related cues. An explicit privacy control coefficient further

enables continuous adjustment of anonymization strength

without architectural changes. Extensive evaluations on

LFW, CelebA, and CelebA-HQ demonstrate that Struct-

Former achieves a strong balance between visual fidelity

and privacy protection. Compared with classical obfusca-

tion methods and recent generative approaches, it consis-

tently improves image quality and face detectability while

substantially reducing re-identification rates under strong

face recognition models.
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