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Abstract

The widespread use of face data in computer vision
raises significant concerns about privacy and identity leak-
age. Conventional anonymization techniques, such as blur-
ring or masking, often degrade facial structure and ex-
pression, while existing generative methods may still retain
identifiable cues when evaluated against strong face recog-
nition systems. To address these limitations, we propose
StructFormer, a structure-consistent face de-identification
framework based on a Transformer—GAN generator. Struct-
Former adopts a dual-stream design in which facial land-
marks and masks provide explicit structural priors that are
fused with appearance features through a Structure-Aware
Attention Fusion module. This enables the preservation
of head pose, facial layout, and expression while modify-
ing identity-related appearance. A privacy control coeffi-
cient further allows continuous adjustment of anonymiza-
tion strength without architectural changes. Experiments
on LFW, CelebA, and CelebA-HQ demonstrate that Struct-
Former achieves a favorable balance between visual fi-
delity and privacy protection, maintaining high face detec-
tion rates (approximately 99%-100%) and competitive FID
scores, while substantially reducing re-identification per-
formance under strong FaceNet and ArcFace attackers, with
match rates as low as 0.03% on CelebA-HQ.

1. Introduction

The increasing availability of large-scale face data has en-
abled rapid progress in face analysis and recognition sys-
tems, while simultaneously raising serious concerns about
privacy and identity leakage. Regulatory frameworks such
as the GDPR, along with the removal of several widely used
face datasets due to privacy considerations [11, 15], reflect
a growing recognition that facial identity constitutes sensi-
tive biometric information. As a result, there is a pressing
need for effective face de-identification methods that sup-
press identity information while preserving visual content
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required for legitimate analysis and evaluation.

A central challenge in face de-identification stems from
the strength of modern face recognition (FR) models. Even
on high-quality, well-aligned face images, state-of-the-art
FR systems can reliably extract identity cues from subtle
combinations of texture, geometry, and expression. As a
result, effective de-identification must operate under realis-
tic attack scenarios, in which naive privacy protections are
insufficient. At the same time, facial data often remains
valuable only if key semantic properties, such as pose, ex-
pression, and overall facial structure, are preserved. Face
de-identification therefore entails a fundamental trade-off,
i.e., suppressing identity-related information while retain-
ing structural and semantic facial attributes required for
downstream analysis and evaluation [40].

Traditional anonymization techniques, such as blur-
ring [1], occlusion [6], or downsampling [26], attempt to
address this trade-off through coarse visual obfuscation.
While simple to deploy, such approaches offer limited ro-
bustness against modern FR systems and learning-based re-
construction attacks [45]. More importantly, these transfor-
mations indiscriminately degrade both identity-related ap-
pearance and structure-related cues, frequently distorting
facial geometry and expression, and substantially reduc-
ing the utility of the anonymized data for downstream vi-
sion tasks. These limitations have motivated the adoption of
generative approaches that aim to explicitly modify identity
while preserving other facial attributes.

Recent advances in deep generative modeling, includ-
ing StyleGAN-based architectures [20-22] and diffusion
models [8, 14, 44], have demonstrated impressive capacity
for high-fidelity face synthesis. These models provide new
opportunities for fine-grained anonymization by replacing
the original identity with synthesized surrogates. How-
ever, directly applying large generative models to face de-
identification remains challenging. Diffusion-based meth-
ods typically require costly iterative sampling, while large
generative models may exhibit memorization effects, repro-
ducing identity traits or stylistic patterns from the training
data and thereby increasing the risk of identity leakage or
unauthorized mimicry [3]. More broadly, many existing



Figure 1. Illustration of the impact of the privacy parameter (pp) of StructFormer. Each row shows de-identification results for one test
subject under different privacy parameter settings. Higher pp values remove more identity information, while still preserving the overall
facial structure and expression relatively well. The four columns (from left to right) correspond to pp = 0, 0.3, 0.5, and 0.8, respectively.

generative anonymization methods struggle to reliably dis-
entangle identity-related appearance from facial structure,
particularly under strong recognition attacks [48] leading to
significant re-identification risk.

Convolutional GAN-based anonymization models offer
the advantage of efficient single-step inference, but often
lack explicit mechanisms to enforce global geometric con-
sistency when identity cues are intentionally altered. Due
to their limited receptive fields, such models may introduce
structural distortions, including misaligned facial compo-
nents or corrupted expressions, which degrade visual qual-
ity and compromise the usability of anonymized faces.
These observations highlight the need for de-identification
frameworks capable of enforcing holistic geometric consis-
tency and explicitly preserving structure-related informa-
tion, such as pose and expression, while modifying identity-
related texture and appearance.

In this work, we propose StructFormer, a novel struc-
ture-consistent face de-identification framework that meets
these challenges. StructFormer is built on a Transformer—
GAN generator and incorporates explicit structural priors in
the form of facial landmarks and masks. Through an inno-
vative Structure-Aware Attention Fusion (SAAF) module,
geometric information is injected into the generative pro-
cess of StructFormer to constrain identity transformation
and preserve facial layout and expression. Additionally, we
also introduce a coordinated loss design that balances con-
tent preservation with identity suppression and enables con-
tinuous control over anonymization strength, as illustrated
in Figure 1. Extensive experiments on LFW, CelebA, and
CelebA-HQ demonstrate that StructFormer achieves a fa-
vorable trade-off between visual fidelity and privacy pro-
tection, substantially reducing re-identification rates under
strong attackers, while maintaining high face detectability
and structural consistency of the de-identified facial images.

In summary, our main contributions are threefold:

¢ We introduce StructFormer, a Transformer—GAN based

face de-identification framework that integrates explicit
structural priors to address identity leakage under strong
face recognition attacks.

* We propose a Structure-Aware Attention Fusion (SAAF)
mechanism that injects landmark- and mask-based geo-
metric information into the generative process via cross-
attention, enabling global coordination between structure
and appearance during identity suppresion.

* We present a coordinated learning objective that sup-
ports continuous control over the privacy-utility trade-
off. Moreover, we conduct a comprehensive experimen-
tal evaluation on three standard face benchmarks against
state-of-the-art FR models to quantify identity suppres-
sion, structural fidelity, and face detectability.

2. Related Work

In this section, we briefly survey closely related work on
visual privacy and face de-identification, needed to provide
context for our work. For a more comprehensive coverage
of this field, we refer the reader to some of the existing sur-
veys available in the open literature, e.g., [28, 40, 56].

2.1. Visual Privacy and Face De-identification

The widespread use of social media platforms and mobile
cameras has led to the large-scale collection and dissemi-
nation of visual data, while simultaneously amplifying the
risk of privacy leakage. As a result, many contemporary vi-
sion datasets contain identifiable facial imagery [35, 47],
prompting the introduction of data protection regulations
such as GDPR, PDPA, and PIPA [9, 15, 53]. Since fa-
cial identity constitutes a highly sensitive biometric at-
tribute [9], protecting faces has become a central concern in
privacy-preserving computer vision. Face de-identification
(de-ID) has emerged as a practical approach for balancing
privacy protection with data utility. In contrast to com-
pletely discarding faces or applying irreversible masking,



de-ID aims to suppress identity-related information, while
preserving attributes such as pose, expression, visual fi-
delity and coarse appearance that are relevant for down-
stream analysis. The well-documented limitations of classi-
cal anonymization techniques, such as blurring, pixelation,
and occlusion, have motivated increasing interest in gen-
erative de-ID methods, which provide a more flexible and
controllable privacy—utility trade-off [40].

2.2. Traditional Anonymization of Faces

Early privacy-aware systems primarily relied on simple im-
age transformations, such as blurring, pixelation, occlusion,
or additive noise, to obscure facial identity [1, 6, 26, 38].
While easy to implement, these methods indiscriminately
degrade facial information, including pose, expression, and
skin tone, and provide limited robustness against modern
face recognition models, which can often (also through so-
called parrot-attacks) re-identify faces that appear visually
anonymized [42]. An alternative line of work draws in-
spiration from k-anonymity, exemplified by the K-Same
framework [49]. K-Same replaces an input face with the
average of its k—1 nearest neighbors in a predefined fea-
ture space, ensuring that at least k identities share the same
de-identified representation. Although more structured than
heavy masking, these averaging-based methods frequently
introduce visual artifacts and struggle to preserve fine-
grained facial structure or semantic attributes [19]. Over-
all, classical anonymization techniques are simple to deploy
but suffer from limited robustness, degraded image quality,
and poor compatibility with downstream analysis, motivat-
ing the transition to generative de-identification approaches.

2.3. Generative Face Anonymization

Generative face de-identification methods replace the orig-
inal identity with a synthesized surrogate while aiming to
preserve utility in the form of pose, expression, and scene
context, allowing anonymized data to remain useful for later
analysis [39]. Most existing approaches are based on gen-
erative adversarial networks (GANs) [10]. CIAGAN [37],
for instance, generates identity-substituted faces condi-
tioned on the source and reinserts them into the origi-
nal image, and subsequent works extend this paradigm in
various directions. AdaDelID [36] introduces controllable
anonymization strength, similarly to [41], A3GAN and RB-
GAN [53, 55] emphasize semantic attribute preservation,
Barattin et al. [2] anonymize entire datasets via latent-space
optimization, RIDDLE [30] enables reversible and diversi-
fied identities, and semantic-aware models [23] selectively
modify identity-sensitive regions. While these approaches
improve realism and attribute retention, many rely on con-
volutional architectures that offer limited global coordina-
tion, and identity leakage under strong recognition attacks
remains insufficiently characterized.

To address global structural modeling, recent works
incorporate self-attention and Transformer-based compo-
nents, including TransGAN [18], ViT-based GAN vari-
ants [29], and masked generative encoders [31]. Diffusion-
based anonymization methods, such as Diff-Privacy and
NullFace [12, 27], further improve visual fidelity but re-
quire iterative sampling and incur substantial computational
overhead. In contrast, our approach adopts a Transformer—
GAN generator augmented with explicit structural priors
and structure-aware attention, enabling stable facial geome-
try and expression preservation, while maintaining efficient
single-step inference for face de-identification.

3. Method

In this section, we introduce the main novelty of this
work,i.e., StructFormer, a structure-consistent face deiden-
tification framework designed to suppress identity informa-
tion, while maintaining consistent facial geometry and ex-
pression. Below, we first provide an overview of the pro-
posed approach, followed by an in-depth description of its’
key components and corresponding learning objective.

3.1. Overview of StructFormer

Generator Architecture. The generator of StructFormer,
illustrated in Figure 2, follows a Transformer—GAN style
encoder—decoder design and incorporates a Structure-
Aware Attention Fusion (SAAF) module. It operates on
two complementary inputs: (1) an appearance stream, con-
sisting of the source face concatenated with a binary mask,
and (2) a structural stream represented by a landmark map.
The SAAF module fuses geometric priors with appearance
features in the latent space, after which the decoder pro-
gressively upsamples the fused representation to synthesize
a de-identified face. This dual-stream formulation explic-
itly conditions generation on facial structure, helping to pre-
serve expression and fine-grained geometric details during
identity transformation.

After SAAF-based feature alignment, a residual up-
sampling decoder restores the spatial resolution. The de-
coder comprises five stages, each consisting of a main
branch, upsampling followed by two convolutional layers,
and a lightweight shortcut connection, whose outputs are
summed. This design improves geometric consistency and
mitigates artifacts commonly associated with transposed
convolutions. A self-attention layer is inserted at an inter-
mediate resolution (B x 256 x 64 x 64), where features
encode global semantic information, while remaining com-
putationally efficient. By propagating long-range spatial in-
teractions, the attention mechanism reinforces coherent fa-
cial layout and expression under strong identity suppression
constraints. Ablation results, presented later in the experi-
mental section, confirm that removing this component leads
to increased structural drift.
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Figure 2. Overview of the proposed Transformer-GAN generator used in StructFormer. The architecture processes an appearance
stream (source face and mask) and a structural stream (facial landmarks), which are fused in the latent space via the proposed Structure-
Aware Attention Fusion (SAAF) module. The fused representation is then decoded by a residual upsampling decoder equipped with
lightweight self-attention blocks to synthesize a de-identified face while preserving global facial structure and expression.

Multi-scale Discriminator. StructFormer employs a multi-
scale PatchGAN discriminator [50], illustrated in Figure 3,
in place of a U-Net-style design. Multiple PatchGAN
discriminators operate at different image resolutions and
jointly evaluate the realism of generated faces. High-
resolution discriminators focus on local appearance details
around salient facial regions, while low-resolution discrim-
inators capture global facial shape and alignment, support-
ing stable synthesis when identity-related cues are modi-
fied. This multi-scale design encourages consistency across
both fine-grained texture and global facial structure, which
is critical when identity information is deliberately altered.

Joint training objectives. Beyond the adversarial objec-
tive, the model is trained with two complementary groups
of auxiliary losses: (1) content-preserving losses and (2)
identity-hiding losses. The content-preserving component
consists of a reconstruction loss and an edge-based loss that
stabilize overall appearance and geometric structure. The
identity-hiding component includes a target-guided Percep-
tual Loss and an enhanced de-identification loss, which pro-
mote separation between the source and generated identi-
ties in perceptual and embedding spaces, respectively. This
joint objective formulation enables controlled identity sup-
pression while preventing unintended degradation of facial
structure and visual fidelity. Detailed formulations and the
roles of these objectives are presented in Section 3.3.

3.2. Structure-Aware Attention Fusion (SAAF)

Dual-stream Structural Priors. The SAAF module oper-
ates on two complementary inputs: a landmark-based struc-

tural stream and a masked appearance stream. Facial land-
marks provide an explicit geometric prior encoding head
pose, contour, and coarse expression, while containing min-
imal identity-specific information. We rasterize a subset of
41 facial keypoints [24, 37] into sparse heatmaps to form
the structural stream. The appearance stream is constructed
by masking the facial region in the source image, which pre-
serves background consistency and confines identity modi-
fication to the face. For images containing multiple faces,
each face is detected and processed independently within its
corresponding bounding box.

Self-attention within Dual Streams. Both streams are flat-
tened into token sequences and processed independently us-
ing multi-head self-attention to capture long-range depen-
dencies within each modality. Given an input sequence X,
we compute

Q=XW,, K=XW;, V=XW,, (1)
followed by standard multi-head attention and a position-
wise feed-forward network, as in standard Transformer
blocks. Here, where W, W, and W, denote learnable lin-
ear projection matrices that map input tokens to query, key,
and value representations.

Cross-attention Fusion. To inject geometric information
into appearance features, SAAF introduces a cross-attention
layer that uses appearance tokens as queries and structural
tokens as keys and values:

Xfuse = MHAtt(Qapm Kir, VS“) . &
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Figure 3. Multi-scale PatchGAN discriminator. Architecture of
the discriminator composed of three scale-specific branches, de-
noted as D1—D3, which respectively produce 14 x 14,7 x 7, and
4 x 4 patch-wise real/fake score maps. This multi-scale formu-
lation enforces visual realism across both local details and global
facial structure.

The resulting update is added to the appearance stream via
a residual connection, after which the fused sequence is re-
shaped into a feature map and propagated to the next stage
of the generator. As spatial resolution decreases and chan-
nel dimensionality increases, SAAF is applied repeatedly to
progressively reinforce landmark-guided geometry.

Discussion. In contrast to simple input-level concatena-
tion of facial masks and landmarks, SAAF performs ex-
plicit alignment between appearance and structure at mul-
tiple stages of the generator. This design enables identity-
related texture to be reshaped under explicit geometric con-
straints, helping preserve facial contours and expressions
even under strong identity suppression. Empirically, this
reduces structural artifacts such as distorted mouths or col-
lapsed eye regions, as confirmed by our ablation studies.

3.3. Training Objectives

To jointly preserve facial structure and suppress identity
information during de-identification, we design the train-
ing objective around two complementary loss components:
(1) a content preservation loss, which stabilizes geometry
and appearance inherited from the source face, and (2) an
identity-hiding loss, which explicitly discourages similarity
to the source identity while enabling controlled identity su-
pression. The two losses are described in detail below.

Content Preservation Loss. Given the source face zg,

the target conditioning x;, and the generated image & =

G(zs, ) with a binary face mask m, we encourage & to

follow both the global appearance and the local boundary

structure of xs. To this end, we use an edge-aware bound-
ary loss Ledge and a masked reconstruction 1oss Lyec.

» Edge-aware Boundary Loss. We first compute an edge-
strength map E(x) from horizontal and vertical image
gradients (e.g., Sobel filters). Starting from the face mask
m, a thin contour band b is obtained by one dilation and
one erosion, so that b;; is non-zero only around the facial
boundary. The edge loss compares edge magnitudes of &
and x, within this band:

b (B@) - E(z.)],
[6]l1 + € '

3)

Eedge =

¢ Masked Reconstruction Loss. Over the whole facial re-
gion, we additionally match the pixels of & to those of z
inside the mask:

o _lme@-a)l,
[mly + €

“)

* Overall Objective.
The final content preservation term is a weighted sum of
the two components:

Econtent = )\edge Eedge + )\rec Ereca (5)

where Acqge and Are. balance boundary sharpness and
overall reconstruction quality.

Identity-hiding Loss. In the identity-hiding branch, we de-

note the source face by x4, the target image by x;, and the

anonymized output by & = G(zs, z¢). The loss combines

a VGG-based perceptual term Lperc and an ArcFace-based

identity term Liq.

* Perceptual Loss. We use a pretrained VGG19 network as
a fixed feature extractor and take activations @;(-) from
a set of shallow, mid-level, and high-level layers. For a
privacy parameter pp € [0, 1], the target feature at layer [
is

le Elow-mida

. {(I)l(mS)»
: (1 —pp) ®i(xs) +pp Pi(xt), | € Lnign,

(6)
so that low/mid layers preserve pose and local structure
from x4, while high layers smoothly interpolate identity
cues from ;. In all experiments, pp is treated as a user-
controlled parameter that is fixed during training and in-
ference. A resized face mask M; restricts the penalty to
the facial region, and the perceptual loss is computed as a
weighted, masked L distance,

Lpere =Y wi|Mi© (®1(2) = T1)||,, (D)
l



encouraging sharp, structurally plausible faces while re-
ducing direct alignment to the source identity in high-
level features.

* Identity Loss. The identity loss is defined on unit-
normalized embeddings from a pretrained Arc-
Face/MobileFaceNet backbone fiq(-). We measure
cosine similarity between two images a and b as

s(a,b) = fia(a)" fia(b). ®)

The identity term combines a “pull” component that
encourages & to approach the target identity z; and a
margin-based “push” component that forces £ away from
the source x:

Lia = Apun (1 —s(z, xt)) + Apush maX(O, s(Z,xs)— ’y),

©))

where ~ controls the minimum allowed similarity to the

source, and Apui, Apush balance attraction to the target

and repulsion from the source. In a pure de-identification

setting, one can disable the pull term by setting A,y = 0,
so that £;q4 only penalizes large similarity to x.

e Overall Objective. The total identity-hiding loss is a

weighted sum of the perceptual and identity components:

Lhide = Qperc Lperc + aiq Lig, (10)

where apere and aiq control the trade-off between struc-
tural fidelity and identity suppression.

4. Experiments

In this section, we evaluate the proposed StructFormer
against representative state-of-the-art face de-identification
methods using standard evaluation methodology. We report
both qualitative and quantitative results across multiple face
datasets to assess visual fidelity, structural consistency, and
identity suppression. We also perform a series of ablation
studies to analyze the influence of key design factors, in-
cluding the number of training identities, the privacy con-
trol coefficient, and the perceptual loss, on the behavior of
the model.

4.1. Experimental Setup

Datasets. The CelebA dataset [33] consists of 202,599 face
images spanning 10,177 identities. We use the aligned ver-
sion, in which each image is registered to the eye midpoint,
padded, and resized to 178 x 218 while preserving the facial
aspect ratio, each identity contains at most 35 images. Fa-
cial landmarks used as structural priors are extracted using
the HOG-based alignment method [5]. To examine higher-
resolution settings, we additionally evaluate on CelebA-
HQ [34], a high-quality variant of CelebA, and report re-
sults on its 256 x 256 subset to illustrate the behavior of
the proposed method at increased image resolution. The

Labeled Faces in the Wild (LFW) dataset [16] comprises
over 13,000 unconstrained face images of 5,749 identities,
among which 1,680 identities have at least two samples.
We use LFW to evaluate de-ID performance and structural
preservation under in-the-wild imaging conditions.

Implementation Details. All models are implemented in
PyTorch [43] and trained on a single NVIDIA RTX 4090
GPU. During training, we use a batch size of 8 and optimize
the networks using Adam [25] with momentum parameters
B1 = 0.0 and B3 = 0.9. The learning rate follows a warm-
up followed by cosine annealing: the generator is trained
with a maximum learning rate of 4 x 10~2, while the dis-
criminator uses a max learning rate of 1 x 10~2; both are
decayed to a minimum learning rate of 1 x 10~°. Training is
performed for 100 epochs, with 3,044 iterations per epoch.

The overall objective is a weighted combination of the
loss terms described in Section 3.3. All loss weights are
fixed across experiments and ablation studies, with A\¢qge =
1.5 and Avec = 3, and apere = 0.8 and ajq = 0.5.

4.2. Baselines and Performance Metrics

Baselines. We perform both quantitative and qualitative
comparisons against representative face de-identification
methods. For the quantitive evaluation of image qual-
ity and de-identification performance, we report results
on CelebA, CelebA-HQ, and LFW, and compare against
A3GAN [53], STGAN [32], Attribute-pre [19], RID-
DLE [30], L2M-GAN [51], as well as the generative base-
lines DeepPrivacy [17] and CIAGAN [37]. These methods
span a range of design choices for identity suppression and
attribute preservation. For the qualitative evaluation, we
present visual comparisons on CelebA-HQ and LFW, with
a focus on structural and expression preservation alongside
effective identity removal. In this setting, we include Deep-
Privacy [17] and CIAGAN [37] as representative state-of-
the-art generative de-identification approaches.

Performance Metrics. We evaluate the proposed method
using metrics that capture both privacy protection and vi-
sual fidelity. To quantify identity removal, we first em-
ploy FaceNet [46], pretrained on CASIA-WebFace [52]
and VGGFace2 [4], to compute a re-identification rate, de-
fined as the proportion of anonymized faces that can still
be matched to their original identities. In addition, we re-
port an ArcFace-based de-identification score [7], where a
pretrained ArcFace model is evaluated in a closed-set set-
ting by matching anonymized embeddings against a gallery
of original faces. To assess whether anonymized out-
puts remain structurally plausible and usable for down-
stream processing, we measure a face detection rate us-
ing MTCNN [54], defined as the fraction of generated im-
ages in which a face is successfully detected. An effective
anonymization method should therefore maintain a detec-
tion rate close to 100% while driving re-identification met-



Table 1. Privacy and image quality results on LFW.

Detection(%) Face re-1D(%)

Method  FIDL 4t MTCNNT  CASIAL VGG

CIA-GAN  22.07 98.14 99.89 0.17 0.91
DeepPrivacy 23.46  96.70 99.57 2.74 1.52
Attribute-pre  27.45  100.00 100.00 2.07 1.58

Ours (0.8) 835 99.65 100.00 1.26 1.33

Table 2. Privacy and image quality results on CelebA.

DeepPrivacy CIA-GAN L2M-GAN  STGAN
FID] 30.12 34.95 18.83 20.14
Detection(%) 7T 87.48 91.60 92.05 91.26
AdaDelID Ours (0.0)  Ours (0.3)  Ours (0.8)
FID| 2.19 10.62 11.56 11.69
Detection(%)1T 95.90 96.94 97.68 97.65

Figure 5. Qualitative results on CelebA-HQ. Each group shows
an original face (left) and the corresponding de-identified output
(right) generated with a privacy parameter of pp = 0.8.

Table 3. Privacy and image quality results on CelebA-HQ.
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Figure 4. Qualitative results on the LFW dataset. For each
sample, the original image (left) and the anonymized result (right)
at pp = 0.8 are shown, illustrating robust de-identification under
unconstrained conditions.

rics toward zero. Finally, we compute the Fréchet Inception
Distance (FID) [13] over all generated images as a global
measure of visual realism and distributional quality.

4.3. Comparison to SOTA

Image Quality and De-identification. On LFW (Tab. 1),
our method achieves a favorable quality—privacy trade-off
compared with CIAGAN, DeepPrivacy, and Attribute-pre.
Face detectability remains near perfect (99.65% with Dlib
and 100.00% with MTCNN), while FID is reduced to 8.35,
substantially lower than all baselines, indicating realistic
anonymized faces with preserved structure. In the CASIA
and VGG feature spaces, using a verification threshold of
0.7, our re-identification rate is slightly higher than CIA-
GAN but clearly lower than the remaining methods, result-
ing in reduced identity leakage for comparable visual qual-
ity. On CelebA (Tab. 2), DeepPrivacy, CIAGAN, L2M-
GAN, and STGAN obtain FIDs between 18.83 and 34.95
with detection rates around 87%-92%. Across different

Detection(%) Face re-ID(%)

Method — FID} i MTCNNt CASIA| VGG

CIA-GAN 3794 95.10 99.82 2.19 0.37
DeepPrivacy 32.99 92.82 99.85 391 1.05
Attribute-pre  29.93  98.58 100.00 2.8 1.67

RiDDLE 539 99.10  100.00 1.9 0.3

Ours (0.8) 7.51  99.16 100.00 0.03 0.04

privacy-control settings (e.g., pp = 0.3 and pp = 0.8),
our variants maintain FID values around 11 while increas-
ing face detection above 97%, demonstrating stable visual
quality under a larger and more diverse identity distribution.
Compared with AdaDelD, our FID is higher, but we achieve
higher face detectability and provide an explicit mecha-
nism for controlling the privacy level. On CelebA-HQ
(Tab. 3), CIAGAN, DeepPrivacy, and Attribute-pre achieve
FIDs above 29, whereas RIDDLE attains the lowest FID of
5.39. Our method reaches an FID of 7.51 at pp = 0.8, re-
maining competitive while achieving near-perfect face de-
tection (99.16% with Dlib and 100.00% with MTCNN). At
a similarity threshold of 0.6, existing methods exhibit de-
identification rates between 0.27% and 3% in the CASIA
and VGG feature spaces, with RIDDLE still yielding 1.9%
/0.3%. In contrast, our method reduces these rates to 0.03%
/ 0.04%, indicating substantially stronger identity suppres-
sion. Across LFW, CelebA, and CelebA-HQ, StructFormer
consistently balances visual quality, face detectability, and
identity removal, producing anonymized faces that remain
structurally intact while exhibiting minimal linkage to the
original identities under strong recognition models.

Qualitative Evaluation. Figs. 4 and 5 present qualita-
tive results on LFW and CelebA-HQ. In each group, the
left image shows the original face and the right image the
corresponding anonymized output. Across both datasets,
the generated faces remain visually plausible: head pose,
coarse facial layout, and expression are preserved, while
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Figure 6. Re-identification rate versus verification thresh-
old. Re-identification performance evaluated on CelebA, LFW,
CelebA-HQ, and CASIA using FaceNet embeddings pretrained
on CASIA-WebFace and VGGFace2. The x-axis denotes the
cosine-similarity threshold and the y-axis the corresponding re-
identification rate. Across all datasets and feature spaces, the re-
identification rate drops rapidly and approaches zero for thresholds
above 0.5, indicating effective de-identification.

Table 4. Ablation results on CelebA under threshold 0.6. We vary
the number of identities (IDs) and the loss design.

IDs Loss
800 1200  content id

Quality FID| 11.72 1072 12.06 12.56

dlib 97.13 9694 96.10 95.84
MTCNN 9997 9997 9997 99.95

CASIA  0.12  0.12 0.05 0.03
Re-ID| VGG 023 0.18 0.09 0.05
ArcFace  0.06  0.06 0.04 0.04

Group Metric

Detection?

fine-grained appearance cues such as facial shape, texture,
and local details are clearly altered, resulting in a distinct
identity. Compared with LFW, CelebA-HQ samples exhibit
sharper contours and cleaner textures, consistent with their
higher resolution and lower FID scores. Nevertheless, even
on the more challenging in-the-wild LFW images, Struct-
Former produces natural-looking anonymized faces with
coherent structure and a clear visual identity shift relative to
the source. Fig. 6 shows the re-identification rate as a func-
tion of the cosine-similarity threshold on CelebA, LFW,
CelebA-HQ, and CASIA using FaceNet features trained on
CASIA and VGGFace2. Across all datasets and feature
spaces, the re-identification rate decreases rapidly with in-
creasing threshold and approaches zero for thresholds above
0.5, indicating strong identity suppression.

4.4. Ablation study

We conduct an ablation study on CelebA to analyze the
effects of three factors: (1) the number of training identi-
ties (IDs), (2) the anonymization strength pp, and (3) the
loss design. Unless stated otherwise, all settings are fixed
and evaluation is performed using a FaceNet attacker with a
threshold of 0.6. For the results reported in Table 4, we set

pp = 0 for both 800 and 1200 IDs.

Effect of the Number of Identities. Using the full loss, in-
creasing the number of training identities from 800 to 1200
leads to a modest improvement in image quality, with FID
decreasing from 11.72 to 10.72, while face detectability re-
mains stable (approximately 97% with dlib and 100% with
MTCNN). De-identification rates under CASIA, VGG, and
ArcFace attackers change only marginally (0.12/0.23/0.06
vs. 0.12/0.18/0.06), indicating limited sensitivity to identity
pool size. Based on this trade-off, we use 1200 identities as
the default configuration.

Effect of Anonymization Strength. To illustrate the effect
of anonymization strength, we vary pp € {0,0.3,0.5,0.8}
and visualize results on randomly selected test subjects in
Fig. 1. As pp increases, the similarity to the source iden-
tity decreases progressively, while facial structure and ex-
pression remain largely stable. This demonstrates that pp
provides effective and continuous control over identity sup-
pression without compromising structural consistency.

Effect of the Loss Design. Fixing the number of identi-
ties to 1200, we compare the full objective with two re-
duced variants: content-only and identity-only losses. Re-
moving either component degrades performance: FID in-
creases to 12.06 (content-only) and 12.56 (identity-only),
compared to 10.72 for the full model, and face detectabil-
ity decreases slightly. De-identification rates under CA-
SIA/VGG/ArcFace attackers also worsen (0.05/0.09/0.04
and 0.03/0.05/0.04, respectively), confirming that content-
preserving losses are necessary for visual quality, while
identity losses are essential for suppressing identity cues.
Their combination yields the best balance between image
quality and privacy protection.

5. Conclusion

We introduced StructFormer, a structure-aware face de-
identification framework based on a Transformer—-GAN
generator. By decoupling structural priors from appear-
ance features and integrating them via structure-aware
attention, StructFormer preserves head pose, facial lay-
out, and expression while effectively suppressing identity-
related cues. An explicit privacy control coefficient further
enables continuous adjustment of anonymization strength
without architectural changes. Extensive evaluations on
LFW, CelebA, and CelebA-HQ demonstrate that Struct-
Former achieves a strong balance between visual fidelity
and privacy protection. Compared with classical obfusca-
tion methods and recent generative approaches, it consis-
tently improves image quality and face detectability while
substantially reducing re-identification rates under strong
face recognition models.
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