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Abstract

Existing single-image morphing attack detection (S-MAD)
systems often suffer from poor cross-dataset generaliza-
tion and operate as opaque “black boxes,” which is par-
ticularly problematic in high-stakes border control sce-
narios. This paper investigates the adoption of open-
source Multimodal Large Language Models (MLLMs) for
S-MAD under strict cross-dataset evaluation through two
different approaches. First, we assess selected MLLMs
in zero-shot settings using a structured forensic prompt-
ing framework, which elicits multi-step semantic analy-
sis with human-readable regional attributions. Second,
leveraging the lightweight and parameter-efficient LoRA
approach and a synthetic training dataset of morphs, we
adapt the best-performing MLLM to the morphing attack
detection (MAD) task in an efficient, generalizable, and
privacy-preserving manner, enhancing the model’s sen-
sitivity to diverse morphing artifacts. Our experimental
results show that the proposed prompting strategy signif-
icantly improves overall attack detection accuracy com-
pared to naive prompting. Moreover, our LoRA-adapted
MLLM, Gemma-3 12B, achieves an average equal error
rate (EER) of 14.81% across various morphing attack
benchmarks, outperforming widely used MAD models.

1. Introduction
Face-morphing attacks pose a serious threat to the in-
tegrity of biometric security systems by blending facial
images of two individuals into a single composite im-
age that simultaneously represents both identities, as il-
lustrated in Figure 1 [15, 19]. By embedding such a mor-
phed image into an identity document, such as a passport,
an attacker and an accomplice can jointly and repeatedly
bypass automated face matching systems during identity
verification [7]. This fundamental vulnerability has mo-
tivated the development of dedicated morphing attack de-
tection (MAD) techniques aimed at reliably distinguishing
bona fide facial images from morphed ones [7, 9, 14, 21].

MAD methodologies are generally categorized into
differential and single-image approaches. Differential
MAD methods assess the authenticity of a presented face
image by directly comparing it to a trusted reference im-
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Figure 1. Face morphing attack threat and proposed detection
pipeline: Blended facial identities compromise document secu-
rity (top); our framework performs detection through zero-shot
structured forensic analysis or fine-tuned classification (bottom).

age acquired during enrollment [6, 33]. In contrast, single-
image MAD operates solely on the probe image, making
it particularly suitable for practical real-world border con-
trol scenarios where reliable reference images are often
unavailable, outdated, or of insufficient quality [7]. In this
paper, we limit our focus to the more challenging single-
image morphing attack detection (S-MAD) task, which
poses stricter constraints on available information.

While traditional S-MAD detectors rely on hand-
crafted features, modern approaches leverage deep learn-
ing supervised classifiers, which often suffer from severe
generalization issues. Recent studies show cross-dataset
equal error rates degrading to near-random performance
when models are trained on one type of morphing at-
tack techniques and tested on another [11, 14]. This ef-



fect is caused not just by the domain shift, but also due
to the variability of morphing attack artifacts that char-
acterize individual morphing techniques [22]. This issue
has been tackled with the development of different un-
supervised [14, 16, 20] and self-supervised MAD tech-
niques [21, 22], but these methods either fail to learn a
well-defined boundary between bona fides and morphs, or
lack human-interpretable results of the decision [39].

Recent advances in foundation models, spanning
vision-only architectures (e.g., ViT), vision–language
models (e.g., CLIP), and Multimodal Large Language
Models (MLLMs) capable of more complex reasoning,
offer a promising route to simultaneously improve MAD
generalization and interpretability. General-purpose vi-
sion–language models, such as CLIP, have previously
shown competitive MAD performance when adapted to
the downstream MAD task [7], but they lack explicit se-
mantic reasoning, which is important for forensic anal-
ysis in security-critical applications. Conversely, propri-
etary MLLMs such as GPT-4 have demonstrated both
impressive zero-shot detection capabilities and decision
interpretability, as reported in preliminary MAD stud-
ies [1, 39]. However, their closed-source nature lim-
its reproducibility, transparency, and task-specific adap-
tation, motivating the exploration of open-source MLLMs
for morphing attack detection. These observations leave
two fundamental questions unanswered: i) whether open-
source MLLMs can match or even exceed specialized
CNN-based MAD systems under strict cross-dataset eval-
uation, and ii) whether parameter-efficient adaptation on
privacy-friendly synthetic data can equip such models
with robust and explainable morphing detection capabil-
ities without overfitting to specific attack processes.

In this paper, we address these questions through a sys-
tematic investigation of widely used open-source MLLMs
for single-image morphing attack detection, focusing on
reproducible, locally deployable architectures rather than
proprietary APIs. Our contributions are multifold:
• We conduct the first systematic zero-shot and cross-

dataset benchmarking of open-source MLLMs across
various, i.e. landmark-, GAN-, and diffusion-based
morphing attacks, revealing pronounced differences in
their latent forensic sensitivity to MAD.

• We introduce a structured multi-step forensic prompt-
ing protocol that leverages chain-of-thought (CoT) rea-
soning to substantially improve zero-shot morphing at-
tack detection performance over naive prompting, while
simultaneously providing interpretable, region-level se-
mantic attributions of detected morphing artifacts.

• We propose a self-supervised, parameter-efficient
MLLM adaptation strategy that leverages privacy-
preserving synthetic data to achieve strong cross-dataset
generalization and competitive performance against
widely used state-of-the-art MAD methods.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews related work on MADs. Section 3 describes
our proposed MAD approach. Sections 4 and 5 present

experiments and results. Section 6 concludes the paper.

2. Related Work
Face morphing attacks have evolved from early landmark-
based warping techniques to increasingly sophisticated
generative approaches. Modern attacks span classical
landmark-based morphs [13, 28], GAN-based synthe-
sis [8, 38], and more recent diffusion-based morphs [3,
11]. This rapid progression has, in turn, driven the evo-
lution of Morphing Attack Detection (MAD) method-
ologies, which have advanced from hand-crafted foren-
sic features to supervised deep learning approaches, and
more recently to generalized unsupervised frameworks
and foundation model-based solutions.

Early Single-Image MAD. Early S-MAD approaches
relied on hand-crafted texture descriptors and image
forensics. Techniques employing Local Binary Patterns
(LBP), Binarized Statistical Image Features (BSIF), and
Photo Response Non-Uniformity (PRNU) analysis were
effective at identifying blending artifacts or sensor noise
inconsistencies [12, 27, 32]. In parallel, Image Qual-
ity Assessment (IQA) strategies, such as MagFace [23]
and CNNIQA [16], leveraged the observation that mor-
phing processes often degrade facial utility or natural im-
age statistics. These methods established important base-
lines and remain relevant as quality-based detectors in our
comparative evaluation. However, their reliance on low-
level cues limits robustness against high-quality, seamless
morphs produced by advanced generation techniques, re-
sulting in poor generalization across datasets [31].

Supervised CNN-based MAD. The advent of deep
learning shifted the focus toward supervised Convolu-
tional Neural Networks (CNNs) as the dominant paradigm
for morphing attack detection. Architectures such as
MixFaceNet-MAD [4] and adaptations of Inception and
ResNet [17, 35] demonstrated high intra-dataset detection
accuracy under controlled laboratory conditions. To fur-
ther enhance interpretability and spatial precision, Pixel-
Wise MAD (PW-MAD) introduced explicit pixel-level su-
pervision to localize morphing regions at fine granularity
and provide more transparent decision cues [9]. Despite
achieving strong detection performance on known attack
types, supervised methods remain prone to severe overfit-
ting to training distributions and dataset-specific artifacts.
As a result, they often fail when confronted with pre-
viously unseen morphing techniques, such as diffusion-
generated morphs, particularly when trained exclusively
on landmark-based examples [14]. This lack of robustness
highlights a fundamental limitation of CNN-based detec-
tors, whose performance can degrade substantially when
exposed to novel and rapidly evolving attack generation
mechanisms encountered in real-world deployments.

Unsupervised and Self-Supervised MAD. To address
the generalization gap, recent research has pivoted toward
the unsupervised and self-supervised learning paradigms,
where MADs are trained on bona fide data only, treating
morphs as out-of-distribution samples. Self-Paced Learn-



ing MAD (SPL-MAD) [14] and MAD-DDPM [20], for
example, train reconstruction models that, based on the
reconstruction error during testing time flag, morphs as
statistical outliers. To improve the estimation of the bona
fide distribution, approaches such as OrthoMAD [25] and
IDistill [5] optimize their models by simultaneously per-
forming identity disentanglement. Some recent works,
e.g., SelfMAD [21] and SelfMAD++ [22], also leverage
self-supervised signals, that train the model in a binary
manner, by utilizing synthetic morphs that represent typ-
ical morphing artifacts, created using augmentations of
bona fide data. These methods have significantly reduced
cross-dataset error rates by learning generic definitions of
face authenticity rather than memorizing specific attack
signatures. Our LoRA-based adaptation of MLLMs fol-
lows a similar path, as training is performed exclusively
on bona fide images with online generation of synthetic
artifacts to preserve generalization to unseen attacks.

Foundation Models for MAD. Most recently, the
emergence of foundation models has opened a new fron-
tier in MAD. Caldeira et al. proposed MADation [7],
which fine-tunes the CLIP vision-language model using
Low-Rank Adaptation (LoRA) [18], achieving state-of-
the-art generalization by leveraging broad pre-trained vi-
sual knowledge. Concurrently, Caldeira et al. introduced
MAD-Prompts [6], exploring multi-prompt aggregation
for zero-shot MAD with proprietary MLLMs. How-
ever, their study remains limited to closed-source APIs
and does not investigate parameter-efficient adaptation or
open-weights models. Furthermore, zero-shot evaluations
using Multimodal Large Language Models (MLLMs) like
GPT-4 Vision have shown that these models possess in-
herent forensic capabilities, offering both detection and
textual explanations without task-specific training [1, 39].

In contrast to MADation, which adapts only the CLIP
vision-language model without explicit reasoning mech-
anisms, our work employs MLLMs that integrate vision
and language for semantic analysis. We introduce a
structured multi-step Chain-of-Thought forensic prompt-
ing protocol for zero-shot MAD. Moreover, we implement
self-supervised LoRA fine-tuning of MLLMs applied to
both the vision and language components of the models,
for their adaptation to the downstream MAD task. Unlike
existing MAD methods, our approach provides both inter-
pretability through structured reasoning and cross-dataset
performance across diverse morph types.

3. Methodology
In this section, we present two distinct options related to
the adoption of open-source MLLMs for MAD. First, we
propose a zero-shot forensic prompting strategy designed
to elicit latent expert knowledge from off-the-shelf mod-
els without parameter updates. Second, we introduce a
synthetic-data-driven MLLM adaptation, where we fine-
tune an MLLM to a downstream task using on-the-fly
generated synthetic artifacts. The latter approach aims
to learn generalized representations of morphing attacks

without relying on labeled datasets of specific morphing
algorithms, thereby addressing the critical issue of over-
fitting in current MAD approaches.

3.1. Zero-Shot Forensic Prompting Strategy
Standard prompting strategies (e.g., asking ”Is this face
morphed?”) fail to produce reliable results in forensic con-
texts, often leading to model hallucinations or refusals due
to safety alignment [24]. To overcome this issue, we de-
veloped a structured prompting methodology grounded in
Chain-of-Thought (CoT) reasoning [37], transforming the
MLLM from a passive classifier into an active forensic an-
alyst. We additionally condition the MLLM with a foren-
sic analyst system prompt to reduce generic safety refusals
and anchor the model in the MAD context.

Structured Analytical Protocol. Our approach moves
beyond binary classification by implementing a six-step
analytical protocol inspired by NISTIR 8584 [26] guide-
lines. This protocol explicitly guides the model’s attention
to anatomical face regions where morphing artifacts typ-
ically appear. These six steps are presented as numbered
sub-questions in the prompt, and the model must provide
a brief textual assessment for each before issuing a final
decision. Our proposed prompt sequentially evaluates:
1. High-Frequency Features: Scrutinizing fine-grained

details around the eyes and lips for ghosting, double
edges, or unnatural sharpness discontinuities.

2. Facial Geometry: Detecting subtle asymmetries, spa-
tial misalignments, or warping inconsistencies intro-
duced by landmark-based blending operations.

3. Skin Texture Analysis: Identifying unnatural smooth-
ing, loss of skin porosity, or texture homogenization
commonly observed in attacks generated with deep
learning-based methods or heavily retouched imagery.

4. Boundary Consistency: Checking for blending arti-
facts, color mismatch, or edge disruptions at common
areas of interest such as hairline, jawline, face contour.

5. Lighting Coherence: Verifying consistent illumination
direction, shadow placement, and reflectance proper-
ties across different facial regions in the image.

6. Identity Integrity: Performing a holistic assessment
of overall identity coherence, ensuring that facial at-
tributes remain semantically consistent and plausible.
Semantic Scoring and Output Constraints. A key

challenge in zero-shot evaluation with MLLMs is the re-
liable extraction of calibrated, continuous confidence esti-
mates for quantitative performance analysis. In prelim-
inary experiments, we observed that coarse confidence
scales (e.g., 0–100, where lower values indicate bona fide
images and higher values indicate morphs) induce pro-
nounced score quantization, with predictions collapsing
onto a small set of discrete values. This behavior reduces
score resolution and degrades the reliability of threshold-
based evaluation metrics used to quantify detection error.

To mitigate this issue, we adopt a high-resolution con-
fidence scale ranging from 0 to 10,000, coupled with an
explicit semantic interpretation of score intervals. This



choice is not intended to increase numerical precision in a
statistical sense, but to counteract the tendency of MLLMs
to collapse predictions onto a small set of preferred nu-
meric tokens when prompted with coarse ordinal scales.
Low-resolution ranges (e.g., 0–100) encourage categori-
cal reasoning and rounded outputs, whereas a larger nu-
meric range supports finer-grained ordinal differentiation.
To further stabilize score usage, semantic anchors are de-
fined within the prompt. Scores above 9,000 thus indicate
high certainty of a morph, while scores in the 1,000–3,000
range denote likely bona fide images. This guides the
model to utilize a full dynamic range and yields smoother
score distributions for threshold-based evaluation.

To support automated evaluation and reproducibility,
we constrain the model output to a strict JSON schema
of the form {"step1 reasoning": "...",
"step1 score": "...", ...}. For each of the
six forensic analysis steps introduced above, the model
is required to produce textual reasoning and a score
denoting whether the input image represents an attack.
The final decision score is obtained by averaging the six
step-wise confidence scores and is used for quantitative
evaluation and threshold-based decision making. This
structured output ensures machine parsability while
enforcing a clear separation between reasoning and
decision making, thereby improving interpretability and
consistency across inference runs. The exact prompts
used in our experiments are provided in the Appendix.

3.2. Synthetic-Data-Driven MLLM Adaptation
Zero-shot MLLMs rely solely on broad pretraining and
prompt-based reasoning, without task-specific calibration
to the subtle visual artifacts characteristic of morphing at-
tacks. Consequently, their sensitivity to fine-grained, low-
level inconsistencies, such as localized geometric distor-
tions or frequency-domain artifacts, may be insufficient
for reliable morph detection. These limitations motivate
targeted adaptation of MLLMs to improve detection accu-
racy while preserving generalization. We adapt MLLMs
using a binary training objective on synthetic data.

Generation of Synthetic Training Data. We adopt a
training strategy that simulates typical morphing artifacts
rather than using real morphs, similar to [21]. By defin-
ing the “attack” class through synthetic perturbations, we
force the model to learn generic indicators of manip-
ulation rather than the specific characteristics of actual
morphing techniques (e.g., StyleGAN fingerprints). The
pipeline for simulation of training data generates training
pairs of bona fide and morphed images (IBF, IM) by pro-
cessing bona fide inputs I through three separate stages:
• Pixel-Space Artifact Simulation: introduces artifacts

that simulate irregularities created by landmark-based
morphing techniques. Specifically, given an input bona
fide image I , this stage first applies a set of randomly
parametrized geometrical image transformations ζ:

IPA = ζ(I), (1)

where ζ is randomly sampled from {Translation,
ElasticTransform, Scaling}. The pixel-
augmented image IPA is blended with the source I us-
ing a binary blending mask M :

I ′PA = IPA ⊙ a ·M + I ⊙ (1− a) ·M, (2)

where a is the blending factor, uniformly sampled from
a predefined set {0.5, 0.5, 0.5, 0.375, 0.25, 0.125}.

• Frequency-Space Artifact Simulation: injects structured
noise patterns into the Fourier spectrum of the blended
image I ′PA to mimic the spectral inconsistencies in-
troduced by deep learning morphing techniques, i.e.,
GANs and diffusion models. Specifically, this stage first
creates a random structured geometrical pattern Φ, uni-
formly chosen to represent one of the following: a sym-
metrical grid, an asymmetrical grid, a square checker-
board, a circular checkerboard, randomly distributed
squares, a set of random lines, or a set of random
stripes. The magnitudes of its Fourier transform FΦ =
|FFT(Φ)| are then superimposed on the magnitudes of
the Fourier transform of I ′PA, FPA = |FFT(I ′PA)|, and
transformed back to the image space, by applying the
inverse Fourier Transformation FFT−1:

IFA = FFT−1
(
(1− k)FPA ⊕ kFΦ

)
, (3)

where k is a constant that defines the contribution of
Fourier spectra FPA and FΦ to the summation.

• Visual Variability Simulation: focuses on transform-
ing the visual appearance of images to simulate subtle,
global visual variations commonly encountered in real-
world imagery. Specifically, given an input bona fide
image I and a synthetic morph IFA, this stage applies
a set of randomly parametrized transformations ψ, to
generate a bona fide image IBF and morph IM :

IBF = ψ(I), IM = ψ(IFA) (4)

where ψ is uniformly sampled from
{RGBShift,HueSaturationValue,
RandomBrightnessContrast,
RandomDownScale, Sharpen} - a set comprising
five basic (global) image transformations.
An example of a train pair (IBF , IM ) is shown in Fig-

ure 2.
Parameter-Efficient MLLM Adaptation. Full fine-

tuning of multi-billion-parameter models is computation-
ally prohibitive and may lead to catastrophic forgetting of
pre-trained knowledge. Therefore, we employ LoRA [18]
to adapt our MLLM by injecting a small number of train-
able parameters while keeping the pre-trained weights
frozen. Specifically, for a frozen pre-trained weight ma-
trix W0 ∈ Rd×k, the weight of the adapted model is

W =W0 +∆W, ∆W = BA (5)

where B ∈ Rd×r and A ∈ Rr×k are trainable low-rank
matrices with rank r ≪ min(d, k).



(a) Bona Fide Image IBF (b) Simulated Morph IM

Figure 2. Example of a synthetic training image pair used for the
MLLM adaptation. (a) represents a bona fide image, (b) is gen-
erated via pixel-space and frequency-space artifact simulation.

Importantly, during the adaptation of our MLLM, we
apply LoRA adapters to query (q) and value (v) projec-
tions of the self-attention layers in both the Vision En-
coder and the Language Decoder towers. This dual-tower
strategy is essential for MAD, as adapting the vision tower
allows the model to extract forensic visual cues (e.g.,
noise patterns) that are likely suppressed in standard pre-
training, while adapting the language tower aligns the rea-
soning engine to the description of typical visual artifacts.
Additionally, we append the final aggregated token output
of the decoder with a lightweight MLP classification head,
optimized using Binary Cross-Entropy (BCE) loss:

LBCE = − [y · log(p) + (1− y) · log(1− p)] (6)

where p is the model’s probability to classify an image as
a bona fide or a morph, while y is the ground truth label.

The classification head is trained jointly with the LoRA
adapters in the vision and language towers, while original
MLLM parameters are not updated as they are frozen.

4. Experiments
Experimental MLLMs. For our experiments, we select
four different widely used open-source MLLMs: Gemma-
3 (27B and 12B) [36], optimized for strong multimodal
reasoning with efficient instruction tuning; Qwen2.5-VL
32B [2], known for robust visual understanding and mul-
tilingual reasoning; Llama-4-Scout 17B, designed for effi-
cient deployment and fast multimodal inference; and Mis-
tral Small 3.1 24B - a compact yet powerful MLLM em-
phasizing efficiency and strong language modeling per-
formance. With this selection, we aim to cover various ar-
chitectural innovations, including Mixture-of-Experts and
varying parameter scales, ensuring our findings are robust
across different model backbones. In our experiments
all models are evaluated in zero-shot settings, while the
parameter-efficient LoRA adaption is performed only with
Gemma-3 12B, as the best-performing MLLM.

Testing Datasets. To ensure rigorous assessment of
MLLMs’ MAD performance, we evaluate models across
different testing datasets spanning classical landmark-
based morphs, GAN-, and diffusion-based attacks. Fig-
ure 3 illustrates how visual characteristics of morphs

(a) OpenCV (b) StyleGAN2 (c) Greedy-DiM

Figure 3. Examples of a landmark-based (a), a GAN-based (b),
and a diffusion-based (c) morph, all three generated using bona
fide images from FRLL. The visual characteristics of morphs
vary substantially depending on the morphing technique.

differ depending on the type of the underlying morph-
ing technique. In our experiments, we utilize seven
widely used benchmark datasets: FRLL-Morphs, FRGC-
Morphs, FERET-Morphs [30], containing morphs gen-
erated with morphing algorithms AMSL, FaceMorpher
(FM), OpenCV (OCV), StyleGAN2 (SG), and WebMorph
(WM), and higher-quality sets MorGAN [8], MIPGAN-
II [38], MorDIFF [11], and Greedy-DiM [3]. In addition
to these datasets, we also use LMA-DRD [9], included to
evaluate performance on printed and scanned images, to
assess robustness against re-digitalization noise.

Training Data. During the synthetic-data-driven
MLLM adaptation, we utilize the bona fide training sub-
set of SMDD [10]. This subset consists of 25,000 syn-
thetic images generated with StyleGAN2 utilized to gen-
erate simulated training morphs as described in Section 3.

Evaluation Metrics. In our evaluations, we follow the
ISO/IEC 20059:2025 standard1 by computing the Equal
Error Rate (EER), where the Morphing Attack Classifica-
tion Error Rate (MACER) equals the Bona Fide Sample
Classification Error Rate (BSCER). MACER corresponds
to the proportion of morphs incorrectly accepted as bona
fide, whereas BSCER measures bona fide images falsely
rejected as attacks. Beyond EER, in some experiments we
also report BSCER at fixed MACER operating points of
1% and 5%. These stricter operating points more accu-
rately reflect real-world identity verification tasks, where
low attack-acceptance is essential for system security.

Implementation Details. Our experimental protocol
explicitly differentiates between zero-shot evaluation of
MLLMs and their adaptation to the MAD task.

During the zero-shot evaluations, all models were con-
figured with a temperature of 0.1 to balance output deter-
minism with the creative reasoning required for forensic
analysis. Inference was performed using the vLLM en-
gine on a cluster of four NVIDIA RTX 4090 GPUs. To fit
memory constraints, Llama-4-Scout utilized 4-bit quanti-
zation, while other models used bfloat16. Images were
preprocessed following the requirements of each MLLM.

During the lightweight adaptation of Gemma-3 12B,

1International Organization for Standardization (ISO). ISO/IEC
20059:2025 — Information technology — Biometric presentation attack
detection — Testing and reporting. (This standard supersedes ISO/IEC
30107-3:2017.)



Table 1. Zero-shot MLLM evaluations vs. LoRA-adapted Gemma-3 performance in terms of EER(%). The LoRA-adapted Gemma-3
significantly outperforms all zero-shot baselines, including the classification head trained on top of the pretrained Gemma-3.

Dataset Morph Zero-shot evaluations Gemma-3 + classification head
type Mistral Small 3.1 Llama-4-Scout Qwen2.5-VL Gemma-3 Pretrained backbone LoRA adapted

FRGC-M
FM 49.20 — 42.41 32.19 24.48 4.98

OCV 52.82 — 42.62 43.55 29.72 9.23
SG 50.45 — 59.81 57.06 40.82 17.32

FERET-M
FM 53.07 — 34.52 18.20 13.80 9.30

OCV 53.26 — 32.46 19.62 11.73 7.40
SG 48.57 — 34.27 40.94 27.40 34.97

FRLL-M

AMSL 42.13 49.63 44.13 25.10 48.62 12.74
FM 37.29 41.50 43.01 13.08 18.15 0.49

OCV 40.24 37.63 39.51 13.33 6.38 1.47
SG 52.06 47.59 26.86 27.39 16.72 6.83

WM 40.78 39.22 41.06 12.88 21.47 2.37

LMA-DRD D 49.01 — 45.40 47.05 31.56 18.90
PS 51.50 — 47.43 43.88 39.74 28.28

MorGAN GAN 55.60 — 48.63 52.58 46.69 45.26
LMA 46.88 — 51.67 52.87 50.00 23.06

MIPGAN II SG 50.24 46.58 20.75 35.56 31.67 17.92
Greedy-DiM DiffAE 50.49 49.93 24.55 6.15 11.24 11.78
MorDIFF DiffAE 47.77 — 45.91 36.13 24.88 17.33
Average 48.41 44.58 40.28 32.09 27.50 14.98

we leverage LoRA adapters with parameters r = 16,
and α = 32, injected into the query and value projec-
tions of all self-attention layers in the vision and the lan-
guage tower of the MLLM. Weights were optimized for
30 epochs with an effective batch size of 32. To promote
stable optimization, we employ a differential learning rate
strategy across model components. Specifically, we use
a higher learning rate for the randomly initialized clas-
sification head (1 × 10−4), a moderate learning rate for
the vision tower (6 × 10−6), and a substantially lower
learning rate for the language tower (3 × 10−7). This de-
sign reflects the differing levels of sensitivity to parame-
ter updates: the classification head requires rapid conver-
gence from scratch, while the vision and language tow-
ers—adapted via LoRA—benefit from more conservative
updates to preserve pre-trained representations and pre-
vent destabilization of linguistic reasoning. The optimiza-
tion was performed on two NVIDIA A100 (80GB) GPUs.

Comparison With Existing MADs. We assess the
MAD performance of evaluated MLLMs against various
established MAD methods. Among supervised baselines,
we consider MixFaceNet-MAD [4], Inception-MAD [29],
and PW-MAD [9]. As the performance of the supervised
methods and their generalization strongly depend on the
training data, we train each method on three different
datasets, i.e., SMDD, MorGAN, and LMA-DRD, follow-
ing a protocol established in [14]. In addition to super-
vised MADs, we also include comparison with unsuper-
vised MADs FIQA-MagFace [16], CNNIQA [16], SPL-
MAD [14], and MAD-DDPM [20], conceptually similar
self-supervised models SBI [34] and SelfMAD [21], and
the foundation model-based method MADation [7].

5. Results
MLLM Evaluation in Zero-Shot Settings. Results ob-
tained during the zero-shot evaluation of selected MLLMs

are summarized in Table 1. Among the four selected
MLLMs, Gemma-3 27B achieved the best average EER
of 32.09%, outperforming the runner-up Qwen2.5-VL
by 8.19%. Both Llama-4-Scout and Mistral Small 3.1
performed substantially worse, with an overall EER of
44.58% and 48.4%, respectively. These results demon-
strate that MLLMs possess different zero-shot capabilities
for detecting morphed faces. The sensitivity of the models
to specific morphing techniques also varies considerably.
However, MLLMs in general achieve lower attack detec-
tion error when tested on artifact-rich morphs, as opposed
to the accuracy measured on higher-quality morphed im-
ages. Gemma-3, for example, relatively accurately de-
tects blending artifacts in FRLL FaceMorpher, OpenCV,
and WebMorph attacks, with an EER ranging between
12.88% and 13.33%. Nevertheless, detection errors are
significantly higher on FRGC-StyleGAN morphs (57.1%
EER), probably due to the seamless latent-space interpo-
lation performed by the morphing technique StyleGAN,
which produces very few perceptible artifacts. Qualita-
tive evaluation examples with corresponding confidence
scores and reasoning are shown in Figure 4.

Evaluation of the Adapted MLLM. To isolate the im-
pact of LoRA adaptation, we evaluate Gemma-3 12B us-
ing a lightweight, probability-based classifier rather than
prompt-derived numeric scores. Specifically, we first at-
tach and train an MLP classification head on top of the
frozen (unadapted) MLLM and use its sigmoid output as
the morph probability. This bypasses the need to inter-
pret free-form numeric confidence values generated by
the language decoder, which are subject to token-level bi-
ases and scale-dependent discretization. We then evalu-
ate the LoRA-adapted Gemma-3 12B in the same man-
ner. Results are reported in Table 1. As can be seen,
the unadapted MLLM with an added classification head
achieves an average EER of 27.50%, outperforming zero-



Table 2. Comparison of the LoRA adapted Gemma-3 with supervised MAD models trained on different datasets in terms of EER(%).
Gemma-3 outperforms competitors in terms of average detection accuracy, achieving stable performance across different morph types.

Dataset Morph MixFaceNet-MAD [4] PW-MAD [9] Inception-MAD [29] Gemma-3
type D PS LMA GAN SMDD D PS LMA GAN SMDD D PS LMA GAN SMDD [LoRA]

FRGC-M
OCV 23.81 25.04 31.62 21.11 20.67 57.06 48.60 29.74 53.55 26.45 34.32 13.65 36.17 59.66 19.63 9.23
FM 22.83 23.54 29.38 19.98 18.10 56.00 50.70 30.49 51.61 23.40 34.96 19.71 35.10 56.91 16.06 4.98
SG 32.71 28.68 21.70 21.95 11.62 37.38 38.42 16.43 26.62 14.32 41.14 25.85 36.19 47.03 15.26 17.32

FERET-M
OCV 28.12 32.19 31.57 33.86 31.74 37.27 45.29 34.27 43.11 39.93 6.39 7.23 42.12 13.62 59.32 7.40
FM 22.57 29.48 27.90 31.81 23.69 35.16 44.30 28.24 40.40 29.41 5.17 6.91 36.53 18.36 46.94 9.30
SG 29.57 29.02 35.46 39.41 39.85 44.25 45.30 29.70 42.47 47.20 9.03 7.12 35.29 15.09 60.05 34.97

FRLL-M

OCV 8.82 13.22 8.91 17.66 4.39 17.33 15.69 13.96 45.59 2.42 13.72 10.76 6.86 55.89 5.38 1.47
FM 7.80 10.97 7.34 15.65 3.87 13.88 15.14 10.92 44.57 2.20 16.62 15.81 6.32 66.14 3.17 0.49
SG 20.07 15.29 13.41 23.51 8.89 29.97 27.64 18.11 48.53 16.64 37.24 19.58 20.56 55.03 11.37 6.83

WM 25.97 29.04 20.61 30.39 12.35 33.78 28.51 35.75 52.43 16.65 57.38 58.32 30.88 77.42 9.86 2.37
AMSL 24.53 27.59 19.24 30.03 15.18 36.25 32.95 34.38 48.52 15.18 49.02 61.44 9.80 86.49 10.79 12.74

LMA-DRD D 15.68 18.03 17.06 25.01 19.42 20.80 25.10 22.34 40.21 17.06 7.64 17.06 15.68 50.77 15.11 18.90
PS 21.77 18.44 27.05 27.05 23.72 26.48 23.72 29.41 44.11 20.39 11.37 12.75 22.34 38.42 19.01 28.28

MorGAN LMA 39.42 22.89 10.61 46.42 30.12 34.20 34.14 9.71 34.37 27.31 38.55 31.73 8.43 40.16 28.51 23.06
GAN 53.01 50.44 42.57 24.90 42.64 52.04 46.59 42.80 8.84 43.78 50.84 38.79 27.41 0.40 44.34 45.26

Greedy-DiM DiffAE 45.10 41.67 40.69 48.04 39.71 17.16 33.82 17.16 15.20 42.16 31.86 51.96 25.98 29.90 56.86 11.78
MorDIFF DiffAE 21.30 23.70 28.83 30.19 20.40 3.21 0.98 11.60 16.00 13.80 21.08 21.78 19.41 56.09 15.23 17.33
Average 26.71 26.30 25.21 28.88 21.55 33.21 33.32 25.33 40.46 23.43 28.67 25.48 25.42 47.94 25.70 14.81
∗ Train data: D (LMA-DRD - digital), PS (LMA-DRD - print&screen), LMA (MorGAN - landmark-based), GAN (MorGAN - GAN-based), SMDD

Table 3. Comparison of the LoRA adapted Gemma-3 with unsupervised MAD models in terms of EER(%) and BSCER at MACER
5% and 10%. Gemma-3 shows competitive average EER, while highlighting complementary strengths with state-of-the-art MADs.

Dataset
Morph FIQA-MagFace CNNIQA SPL-MAD MAD-DDPM SBI SelfMAD MADation MADation Gemma-3

type [16] [16] [14] [20] [34] [21] ViT-B[7] ViT-L[7] [LoRA]
EER 5% 10% EER 5% 10% EER 5% 10% EER 5% 10% EER 5% 10% EER 5% 10% EER 5% 10% EER 5% 10% EER 5% 10%

FRGC-M
FM 33.82 73.79 62.84 42.84 75.94 66.86 16.91 25.39 21.47 25.62 95.12 90.15 16.68 38.07 26.14 5.59 6.43 2.80 – – – – – – 4.98 4.91 2.15

OCV 33.30 74.71 62.52 43.15 74.64 66.35 20.75 32.50 25.42 28.22 95.12 90.15 15.32 36.31 25.10 2.59 1.14 0.41 – – – – – – 9.23 14.11 8.31
SG 14.21 26.46 17.60 36.51 70.34 57.93 16.80 26.13 21.09 9.02 95.12 90.15 52.90 97.10 94.40 15.84 45.23 25.52 – – – – – – 17.32 34.35 25.21

FERET-M
FM 25.14 61.22 44.44 13.23 35.17 19.32 20.42 40.85 27.09 27.98 95.27 90.17 26.47 60.87 52.36 3.19 1.70 0.38 – – – – – – 9.30 19.50 8.04

OCV 26.14 61.50 43.95 20.45 58.60 37.23 25.71 57.45 45.60 31.38 95.27 90.17 28.73 70.08 60.61 1.13 0.57 0.38 – – – – – – 7.40 12.75 4.97
SG 12.67 24.63 15.71 33.84 79.55 66.17 25.33 62.06 49.72 32.14 95.27 90.17 41.83 90.55 82.42 18.14 46.12 32.33 – – – – – – 34.97 71.23 61.56

FRLL-M

AMSL 30.94 77.94 66.18 21.61 60.29 39.22 3.26 0.50 0.50 27.13 94.94 90.02 11.76 24.23 16.78 0.99 0.05 0.05 3.85 – 2.89 7.26 – 10.63 12.74 20.71 14.22
FM 27.99 73.04 57.35 19.97 57.84 36.76 1.03 0.99 0.99 10.40 95.19 90.38 13.73 36.99 26.10 0.00 0.26 0.17 1.35 – 0.00 0.74 – 0.98 0.49 0.00 0.00

OCV 24.73 66.18 53.43 7.53 11.76 4.41 1.88 0.50 0.50 13.76 95.17 90.01 12.25 27.85 18.84 0.00 0.00 0.00 2.97 – 0.49 0.99 – 0.00 1.47 0.49 0.00
SG 7.53 8.82 5.39 35.92 75.49 68.14 14.65 32.18 24.75 14.32 95.17 90.18 44.61 94.68 90.92 10.34 24.22 12.52 17.21 – 26.69 24.96 – 49.03 6.83 10.29 5.39

WM 27.19 68.14 55.39 21.54 46.57 33.33 6.39 11.39 3.47 30.30 95.09 90.34 39.22 89.93 83.37 3.45 1.64 0.41 3.42 – 0.49 4.07 – 1.47 2.37 1.47 0.49
MIPGAN II SG – – – – – – – – – – – – – – – – – – 22.21 – 47.55 9.06 – 5.39 17.92 – 23.57
Greedy-DiM DiffAE 47.00 94.61 85.78 49.40 96.08 93.14 37.72 80.69 71.78 36.10 95.20 89.70 33.82 90.60 81.60 7.60 37.60 27.80 – – – – – – 11.78 13.73 11.76
MorDIFF DiffAE – – – – – – – – – – – – – – – – – – 1.10 – 0.00 20.40 – 37.25 17.33 – 26.04
Average (∗) 25.89 59.25 47.55 28.83 61.86 49.07 15.90 30.89 24.36 23.86 95.16 90.13 28.11 63.11 54.89 5.74 13.75 8.56 – – – – – – 9.91 16.96 11.84
Average (†) – – – – – – – – – – – – – – – – – – 7.44 – 11.16 9.64 – 14.96 8.45 – 9.96

∗ Test data: FRGC-M, FERET-M, FRLL-M, Greedy-DiM; † Test data: FRLL-M, MIPGAN II, MorDIFF

shot evaluations by 4.59 percentage points. However, the
LoRA-adapted model significantly reduces the EER to
14.81% (a 46.2% relative improvement), suggesting that
unadapted features are not as informative for MAD.

In our experiments, the adaptation was especially
beneficial for landmark-based morphs. On FRLL-
FaceMorpher, for example, the adapted Gemma-3 12B
achieved an EER of 0.49%, a substantial gain over the
previously reported zero-shot EER of 13.08%. Similar
gains appear on FRLL-OpenCV and FRLL-WebMorph.
After the adaptation, the detection accuracy was also sig-
nificantly improved for some GAN-based morphs, such
as FRLL-StyleGAN2 (improved from 27.39% EER to
6.83%). However, GAN-based MorGAN attacks re-
mained challenging even after the MLLM adaptation. To
better assess such failures, a further analysis on the impact
of the training data used for the adaptation is needed.

Comparison Against Supervised MADs. The em-
pirical comparison of the adapted Gemma-3 12B with
existing supervised MADs is given in Table 2. As can
be seen, our adapted MLLM outperforms all compet-
itive models, achieving an average EER of 14.81%, a
6.74% improvement over the best supervised MAD base-
line MixFaceNet-MAD, trained on SMDD. In addition,
we note that supervised baselines exhibit severe overfit-

ting. Inception-MAD trained on GAN morphs, for exam-
ple, degrades to 55.03% on FRLL-StyleGAN2. In con-
trast, our Gemma-3 12B-MAD maintains consistent per-
formance across attack types, showing better robustness
and generalization across different test data.

Comparison Against Unsupervised MADs. The em-
pirical comparison of the adapted Gemma-3 12B with ex-
isting unsupervised and self-supervised MADs is given
in Table 3. The HRNet-W18-based SelfMAD achieves
the best average EER of 5.74%, outperforming Gemma-3
12B-MAD by 4.17 percentage points. Unlike Gemma-
3 12B-MAD, whose vision encoder represents a trans-
former, SelfMAD extracts visual features with a high-
resolution CNN, which is especially good at detecting lo-
calized artifacts, important for the MAD task. We also
note that while SelfMAD dominates landmark-based at-
tacks, Gemma-3 12B-MAD performs better on certain
generative attacks. On Greedy-DiM, Gemma-3 12B-
MAD achieves 13.73% BPCER at 5% APCER versus
37.60% for SelfMAD. Moreover, Gemma-3 12B-MAD
outperforms both SPL-MAD and MAD-DDPM, showing
the strength and the underexplored potential of MLLMs
in the context of MAD.

Comparison With Foundation Model-based MADs.
We compare against MADation and proprietary MLLMs.



BonaFide
Confidence Score: 1038.71

The image exhibits very low to
moderate suspicion of being a morphing

attack. While the image appears
generally authentic, subtle

inconsistencies in skin texture and a
slight unnatural smoothness around the
mouth warrant a degree of caution. The

overall impression is that of a
genuine face, but the minor artifacts

prevent a completely confident
assessment of authenticity, placing it
within the Low to Moderate Suspicion

range.

StyleGAN
Confidence Score: 5050.51

The image exhibits moderate suspicion,
falling within the Ambiguous/Moderate

Suspicion range. While no single
artifact is definitive, several subtle

inconsistencies in skin texture,
lighting, and facial geometry suggest
potential manipulation. The overall

impression is slightly 'off,'
prompting a cautious assessment.

MorDiff
Confidence Score: 6967.19

The image exhibits several artifacts
indicative of a morphing attack,

falling into the High Suspicion range.
The most prominent issues are the
unnatural smoothness of the skin,

inconsistencies in lighting, and
subtle asymmetries in facial features.

While no single artifact is
overwhelmingly conclusive, the

cumulative effect strongly suggests
manipulation.

OpenCV
Confidence Score: 8133.86

The image exhibits strong indicators
of being a morphing attack. The most
prominent artifacts are the ghosting

and blending around the eyes and ears,
coupled with inconsistencies in skin
texture and lighting. These findings

place the image firmly within the
'High Suspicion' range, suggesting a

high probability of manipulation.

Figure 4. Qualitative zero-shot results generated with Gemma-3. Examples illustrate the step-wise forensic reasoning produced by the
proposed six-step prompting protocol, together with the final aggregated confidence score for one bona fide and three morphing attacks.

Prior work [39] reports GPT-4 Turbo achieves 37.0%
EER on MIPGAN-II in zero-shot evaluation. Our LoRA-
tuned Gemma-3 12B achieves 17.92%, demonstrating
that domain-specific adaptation outperforms larger propri-
etary models. Compared to MADation ViT-B (7.44% av-
erage EER on FRLL/MIPGAN-II/MorDIFF), Gemma-3
12B performs comparably (8.45%). At strict thresholds,
Gemma-3 achieves 9.96% BPCER at 10% APCER versus
14.96% for MADation ViT-L (Table 3).

6. Conclusion

This paper explored the potential of open-source Mul-
timodal Large Language Models (MLLMs) for single-
image morphing attack detection (S-MAD) under strict
cross-dataset evaluation, addressing both generalization
and interpretability, two longstanding challenges in bio-
metric security. We explored MLLMs through two
paradigms: structured zero-shot forensic prompting and
parameter-efficient, synthetic-data-driven adaptation.

First, we demonstrated that carefully designed multi-
step forensic prompting, inspired by established forensic
analysis guidelines, can effectively elicit latent morphing-
related knowledge from pretrained MLLMs without task-
specific training. The proposed Chain-of-Thought pro-
tocol significantly improves zero-shot detection perfor-
mance compared to naive prompts, while simultaneously
producing human-readable, region-level semantic expla-
nations. Notably, zero-shot Gemma-3 exhibits competi-
tive performance on diffusion-based morphs, outperform-
ing specialized CNN-based detectors in certain cases,
highlighting the complementary forensic sensitivity of
MLLMs to emerging face morphing attack types.

Second, we showed that parameter-efficient LoRA
adaptation, guided by privacy-preserving synthetic arti-
facts, substantially enhances MLLM detection accuracy

and cross-dataset robustness. The adapted Gemma-3 12B-
MAD model achieves a strong average EER across eight
diverse benchmarks, outperforming widely used super-
vised and unsupervised MAD methods and approaching
the performance of state-of-the-art self-supervised and
foundation model–based detectors. This confirms that
MLLMs can be effectively adapted to the MAD task with-
out reliance on real-world datasets or proprietary models.

Despite these advances, important limitations remain.
Zero-shot MLLM performance, while inherently inter-
pretable and informative, is not yet sufficient for deploy-
ment in high-security operational settings with strict ac-
curacy requirements. Conversely, LoRA-adapted models
currently operate as binary classifiers and do not retain
the rich, structured forensic explanations available in zero-
shot inference. Additionally, performance degradation on
low-resolution and re-digitized images highlights the need
for improved robustness to adverse data acquisition.

These findings point to a promising future direc-
tion: conversational and multi-objective fine-tuning of
MLLMs, enabling models to jointly deliver classifier-level
accuracy and structured, step-by-step forensic reasoning.
Such models could effectively bridge the gap between
transparency and performance, positioning MLLM-based
MAD systems as trustworthy, explainable, and opera-
tionally viable tools for biometric security applications.
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SelfMAD: Enhancing Generalization and Robustness in
Morphing Attack Detection via Self-Supervised Learning.
In IEEE 19th International Conference on Automatic Face
and Gesture Recognition (FG), 2025. 1, 2, 3, 4, 6, 7

[22] Marija Ivanovska, Leon Todorov, Peter Peer, and Vito-
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