

A. Technical Appendices and Supplementary Material

This appendix presents the verbatim prompt templates evaluated in our zero-shot experiments. We explore three distinct prompt engineering strategies: Prompt 1 establishes a baseline structured forensic protocol inspired by NISTIR 8584; Prompt 2 introduces extended structural complexity, which proved counter-productive due to increased hallucinations; and Prompt 3 offers an optimized refinement of the semantic scoring guide that emphasizes probabilistic analysis to achieve the highest detection accuracy.

A.1. Prompt 1

Listing 1. Prompt 1: Structured Forensic Analysis – Semantic Guide A

```
"""# Multimodal Morphing Attack Detection
Prompt

## Task
You are a multimodal AI system with both
**vision and language understanding**.
You are given an image of a face and
your task is to determine whether it
is a **bona fide (authentic)** face or
a **morphing attack** (a digitally
blended face of two people).

After each step of your analysis, you must
provide a **confidence score** on a
strict scale from **0.000 to
10000.000**, where:
- '0.000' means **definitely bona fide**
- '10000.000' means **definitely morph**
- Values in between reflect **fine-grained
probability** of a morphing attack
- 0-1000: Strong evidence of authentic
face
- 1000-3000: Likely authentic with minor
irregularities
- 3000-7000: Uncertain, requires careful
analysis
- 7000-9000: Likely morphed with moderate
evidence
- 9000-10000: Strong evidence of morphing
attack

> **Important:** Avoid rounded or generic
values like '1000', '5000', '8000'.
Your score must be **precise**, with
at least **three decimal places**.
This is essential for biometric
performance analysis and threshold
calibration.

Use the **step-by-step visual analysis**
outlined below. After each step,
provide a confidence score in the
```

specified format, based on your observations and the responses to the guiding questions.

Visual Analysis Steps

Step 1: Core Facial Features

- Focus on the **eyes, nose, lips, and eyebrows**.
- Look for signs of **ghosting**, **faint duplicates**, or misaligned or unnatural elements.
- Check if eye contours or lip lines appear duplicated or semi-transparent.

Ask: "Do facial features have any doubled contours or blended boundaries?"

Ask: "Do the eyes appear blurred or duplicated?"

Ask: "Do the lips show any visual artifacts, or are the lip lines irregular?"

After this step, provide a confidence score for Step 1 in this format:

```
```json
{"step1_score": [0 to 10000]}
```
```

Step 2: Facial Geometry and Symmetry

- Visually compare the **left and right halves** of the face.
- Detect any asymmetry in shape, spacing, or size of eyes, irises, ears, and jawline.
- Assess if the overall geometry seems subtly misaligned or "averaged."

Ask: "Do the facial proportions look unnaturally blended or off-balance?"

After this step, provide a confidence score for Step 2 in this format:

```
```json
{"step2_score": [0 to 10000]}
```
```

Step 3: Skin Texture and Detail

- Inspect the **skin surface** for fine detail.
- Detect over-smoothness, uniform skin tone, or "plastic-like" appearance.
- Check if pores, wrinkles, or blemishes are abnormally absent or symmetric.

Ask: "Does the skin look too perfect, synthetic, or even-textured?"

Ask: "Are pores, wrinkles, or blemishes abnormally absent or symmetric?"

```

After this step, provide a confidence
score for Step 3 in this format:
```json
{"step3_score": [0 to 10000]}
```

### Step 4: Image Boundary and Hairline
- Look at the **face boundary**, including
  **ears, hairline, and background**.
- Detect any blurred transitions, blending
  seams, or edge mismatches.
- Check for faded or semi-transparent
  features outside the main face.

```

```

**Ask**: "Do any facial borders blend
unnaturally into the background?"
**Ask**: "Are there any faded or semi-
transparent elements present in the
image?"
**Ask**: "Do ears, hairline, and
background have any faded or semi-
transparent artifacts?"

```

After this step, provide a confidence score for Step 4 in this format:

```

```json
{"step4_score": [0 to 10000]}
```

```

```

### Step 5: Lighting and Color Consistency
- Examine **lighting direction,
  reflections, and shadows**.
- Identify **saturation anomalies** (e.g.,
  bright red patches) or abnormal
  gradients.
- Compare lighting consistency across both
  sides of the face.

```

```

**Ask**: "Are there unnatural color shifts
or inconsistent lighting effects?"

```

After this step, provide a confidence score for Step 5 in this format:

```

```json
{"step5_score": [0 to 10000]}
```

```

```

### Step 6: Identity Coherence
- Assess whether all facial features
  belong to the **same plausible
  identity**.
- Detect any mismatch (e.g., eyes that don
  't match the rest of the face).
- Evaluate whether the face looks **overly
  generic or statistically averaged**.

```

```

**Ask**: "Does the face appear to be a
convincing real person, or a blend of
two?"

```

After this step, provide a confidence score for Step 6 in this format:

```

```json
{"step6_score": [0 to 10000]}
```

```

Final Analysis Summary

```

After completing all steps, summarize your
overall findings and indicate which
steps showed the strongest evidence of
a potential morphing attack, if any.
```
]
```

## A.2. Prompt 2

Listing 2. Prompt 2: Extended Forensic Analysis – Semantic Guide A

```

["""# Multimodal Morphing Attack Detection
 Prompt

```

## Task

You are a multimodal AI system with both
 \*\*vision and language understanding\*\*.
 You are given an image of a face and
 your task is to determine whether it
 is a \*\*bona fide (authentic)\*\* face or
 a \*\*morphing attack\*\* (a digitally
 blended face of two people).

Use your visual understanding capabilities
 to examine the image carefully.
 Take time to analyze each aspect before
 providing your confidence score.

After each step of your analysis, you must
 provide a \*\*confidence score\*\* on a
 strict scale from \*\*0.000 to
 10000.000\*\*, where:

- '0.000' means \*\*definitely bona fide\*\*
- '10000.000' means \*\*definitely morph\*\*
- Values in between reflect \*\*fine-grained
 probability\*\* of a morphing attack
- 0-1000: Strong evidence of authentic
 face
- 1000-3000: Likely authentic with minor
 irregularities
- 3000-7000: Uncertain, requires careful
 analysis
- 7000-9000: Likely morphed with moderate
 evidence
- 9000-10000: Strong evidence of morphing
 attack

> \*\*Scoring Guidelines:\*\*

- > - Consider the severity and frequency of
 artifacts
- > - Multiple minor issues may accumulate
 to higher scores
- > - A single clear morphing artifact
 should result in a high score (7000+)

```

> - When in doubt, err on the side of
 caution but justify your reasoning

> **Important:** Avoid rounded or generic
 values like '1000', '5000', '8000'.
 Your score must be **precise**, with
 at least **three decimal places**.
 This is essential for biometric
 performance analysis and threshold
 calibration.

```

Use the \*\*step-by-step visual analysis\*\* outlined below. After each step, provide a confidence score in the specified format, based on your observations and the responses to the guiding questions.

```

Confidence Calibration
Before providing each score, consider:
- How certain are you about this
 assessment?
- Have you seen similar patterns in
 legitimate faces?
- Would a human expert notice these
 artifacts?

```

## ## Visual Analysis Steps

```

Step 1: Core Facial Features
- Focus on the **eyes, nose, lips, and
 eyebrows**.
- Look for signs of **ghosting**, **faint
 duplicates**, or misaligned or
 unnatural elements.
- Check if eye contours or lip lines
 appear duplicated or semi-transparent.

Ask: "Do facial features have any
 doubled contours or blended boundaries
 ?"

Ask: "Do the eyes appear blurred or
 duplicated?"

Ask: "Do the lips show any visual
 artifacts, or are the lip lines
 irregular?"

```

After this step, provide a confidence score for Step 1 in this format:

```

```json
{"step1_score": [0 to 10000]}
```

```

```

Step 2: Facial Geometry and Symmetry
- Visually compare the **left and right
 halves** of the face.
- Detect any asymmetry in shape, spacing,
 or size of eyes, irises, ears, and
 jawline.
- Assess if the overall geometry seems
 subtly misaligned or "averaged."

```

```

Ask: "Do the facial proportions look
 unnaturally blended or off-balance?"

Ask: "Is there any asymmetry in shape,
 spacing, or size of eyes, irises,
 ears, and jawline?"

Ask: "Does the overall facial geometry
 appear artificially averaged or
 unnaturally symmetric?"

```

After this step, provide a confidence score for Step 2 in this format:

```

```json
{"step2_score": [0 to 10000]}
```

```

```

Step 3: Skin Texture and Detail
- Inspect the **skin surface** for fine
 detail.
- Detect over-smoothness, uniform skin
 tone, or "plastic-like" appearance.
- Check if pores, wrinkles, or blemishes
 are abnormally absent or symmetric.

```

```

Ask: "Does the skin look too perfect,
 synthetic, or even-textured?"

Ask: "Are pores, wrinkles, or
 blemishes abnormally absent or
 symmetric?"

```

After this step, provide a confidence score for Step 3 in this format:

```

```json
{"step3_score": [0 to 10000]}
```

```

```

Step 4: Image Boundary and Hairline
- Look at the **face boundary**, including
 ears, hairline, and background.
- Detect any blurred transitions, blending
 seams, or edge mismatches.
- Check for faded or semi-transparent
 features outside the main face.

```

```

Ask: "Do any facial borders blend
 unnaturally into the background?"

Ask: "Are there any faded or semi-
 transparent elements present in the
 image?"

Ask: "Do ears, hairline, and
 background have any faded or semi-
 transparent artifacts?"

```

After this step, provide a confidence score for Step 4 in this format:

```

```json
{"step4_score": [0 to 10000]}
```

```

```

Step 5: Lighting and Color Consistency
- Examine **lighting direction,
 reflections, and shadows**.

```

- Identify \*\*saturation anomalies\*\* (e.g., bright red patches) or abnormal gradients.
- Compare lighting consistency across both sides of the face.

```
Ask: "Are there unnatural color shifts or inconsistent lighting effects?"
Ask: "Are there any saturation anomalies?"
Ask: "Is lighting consistent across both sides of the face?"
```

After this step, provide a confidence score for Step 5 in this format:

```
'''json
{"step5_score": [0 to 10000]}
'''
```

#### ### Step 6: Identity Coherence

- Assess whether all facial features belong to the \*\*same plausible identity\*\*.
- Look for inconsistencies that suggest multiple source faces
- Evaluate whether the face appears artificially averaged or generic
- Check if features match in terms of age, ethnicity, and style

```
Ask: "Do all facial features appear to belong to the same person?"
Ask: "Does the face look artificially perfect or overly averaged?"
Ask: "Are there any inconsistencies in age, ethnicity, or style between features?"
```

After this step, provide a confidence score for Step 6 in this format:

```
'''json
{"step6_score": [0 to 10000]}
'''
```

#### ## Final Analysis Summary

After completing all steps, summarize your overall findings and indicate which steps showed the strongest evidence of a potential morphing attack, if any.

```
"""]
```

### A.3. Prompt 3

Listing 3. Prompt 3: Optimized Forensic Analysis – Semantic Guide B

```
"""
Objective:
Act as a forensic image analysis expert.
Your primary task is to **quantify the level of suspicion** that a given
```

facial image is a \*\*morphing attack\*\*. You will analyze the image for subtle artifacts and indicators, assigning a precise score that reflects your level of confidence.

> \*\*Guiding Principle: From Deterministic to Probabilistic Analysis\*\*

> Your goal is \*\*not\*\* to simply classify the image as "bona fide" or "morph." Instead, you must analyze the visual evidence and quantify your suspicion on a fine-grained spectrum.

Acknowledge ambiguity. A lack of obvious artifacts does not automatically mean a score of 0, nor does a single minor anomaly warrant a score of 10000. Your analysis must produce scores that utilize the \*\*full range\*\* of the scale, reflecting the subtle nature of morphing attacks.

\*\*Scoring Mandate & Semantic Guide:\*\*

You MUST use the entire \*\*0.000 to 10000.000\*\* scale. Scores must have \*\*three decimal places\*\*. Use the following guide to map your findings to a score:

- \*\*'0.000 - 1000.000' (Very Low Suspicion):\*\* Image appears clean, coherent, and authentic. No significant artifacts detected. Corresponds to high confidence in authenticity.
- \*\*'1000.001 - 4000.000' (Low to Moderate Suspicion):\*\* One or two minor, inconclusive artifacts are present (e.g., slight unnatural smoothness, minor asymmetry). These could potentially be explained by compression, lighting, or natural features, but warrant a degree of suspicion.
- \*\*'4000.001 - 6000.000' (Ambiguous / Moderate Suspicion):\*\* There are noticeable artifacts that are suspicious, but no single piece of evidence is conclusive. The image feels "off." This is the zone of highest uncertainty.
- \*\*'6000.001 - 9000.000' (High Suspicion):\*\* Multiple, distinct artifacts are present across different areas of the face (e.g., ghosting on eyes, edge blurring, and inconsistent lighting). A morph is highly probable.
- \*\*'9000.001 - 10000.000' (Very High / Near Certainty):\*\* Overwhelming and clear evidence of morphing. Multiple, strong artifacts are easily identifiable and create an incoherent

```

image.

Forensic Analysis Steps

Step 1: Core Facial Feature Analysis
- **Area of Focus:** Eyes, nose, lips, and eyebrows.
- **Artifacts to Detect:** Ghosting, faint duplicates, misaligned elements, doubled contours, unnaturally blurred eye contours, or irregular/asymmetric lip lines.

Step 2: Facial Geometry and Symmetry Analysis
- **Area of Focus:** Overall facial structure, comparing the left and right halves.
- **Artifacts to Detect:** Unnatural asymmetry in the size or spacing of eyes, irises, or ears. A jawline that appears averaged or ill-defined. Proportions that seem subtly misaligned or blended.

Step 3: Skin Texture and Detail Analysis
- **Area of Focus:** Skin surface across the entire face (cheeks, forehead, chin).
- **Artifacts to Detect:** Overly smooth, "plastic-like," or synthetic skin texture. An abnormal lack of fine details like pores, micro-wrinkles, or minor blemishes. Unnatural patterns or symmetry in skin details.

Step 4: Boundary and Edge Analysis
- **Area of Focus:** The outer perimeter of the face, including the hairline, ears, and jawline transitioning into the background.
- **Artifacts to Detect:** Blurring, smudging, or seam-like artifacts at the edge of the face. Faded or semi-transparent features, especially around the ears or hair. Inconsistencies between the focus/ sharpness of the face and the background.

Step 5: Lighting and Color Consistency Analysis
- **Area of Focus:** The entire image, paying attention to light, shadow, and color.
- **Artifacts to Detect:** Inconsistent lighting direction, unnatural color shifts, mismatched lighting on different parts of the face, or

```

inconsistent specular highlights in the eyes.

#### \*\*Step 6: Identity Coherence Analysis\*\*

- \*\*Area of Focus:\*\* The holistic impression of the face as a single, plausible identity.
- \*\*Artifacts to Detect:\*\* Features that appear to belong to different people, an "overly generic" or statistically averaged appearance, or a general feeling that the face is not a convincing, real person.

---

#### ### Final Output Requirement

After completing your six-step analysis, present your complete findings in a single JSON object. Do not provide any text or explanation outside of this JSON block.

#### \*\*JSON Format:\*\*

```

```json
{
  "final_decision": {
    "overall_confidence_score": [Value
      between 0.000 and 10000.000],
    "summary_of_findings": "A brief
      summary justifying the overall
      score, referencing the Semantic
      Scoring Guide and highlighting the
      key evidence (or lack thereof)."
  },
  "step_by_step_analysis": {
    "step1_core_features": {
      "score": [Value between 0.000 and
        10000.000],
      "rationale": "Describe observed
        artifacts and explain why the
        score reflects a specific level
        of suspicion (e.g., 'Faint
        asymmetry noted in lip corners,
        leading to a low-suspicion score
        of 1850.455')."
    },
    "step2_facial_geometry": {
      "score": [Value between 0.000 and
        10000.000],
      "rationale": "Describe observed
        artifacts and explain why the
        score reflects a specific level
        of suspicion."
    },
    "step3_skin_texture": {
      "score": [Value between 0.000 and
        10000.000],
      "rationale": "Describe observed
        artifacts and explain why the
        score reflects a specific level
        of suspicion."
    }
  }
}
```

```

```

 of suspicion."
},
"step4_boundaries_and_edges": {
 "score": [Value between 0.000 and
 10000.000],
 "rationale": "Describe observed
 artifacts and explain why the
 score reflects a specific level
 of suspicion."
},
"step5_lighting_and_color": {
 "score": [Value between 0.000 and
 10000.000],
 "rationale": "Describe observed
 artifacts and explain why the
 score reflects a specific level
 of suspicion."
},
"step6_identity_coherence": {
 "score": [Value between 0.000 and
 10000.000],
 "rationale": "Describe observed
 artifacts and explain why the
 score reflects a specific level
 of suspicion."
}
}
```
"""

```

A.4. Prompt Optimization in Zero-Shot Settings

We evaluated three prompt engineering strategies across all evaluation subsets. *Prompt 1* established that our structured scoring, inspired by NISTIR 8584 [26], enables MLLMs to detect morphs with measurable accuracy. Increasing structural complexity (*Prompt 2*) proved counter-productive as it increased hallucination and detached the model responses from the task at hand. Our optimized *Prompt 3* refined the semantic scoring guide, thereby reducing Average EER for Gemma3 by **10.3 percentage points** (29.4% to 19.1%; see Table 4). This prompt variation proved optimal, working as is across different MLLMs, as presented in the next subsection.

Table 4. Detailed EER (%) comparison for *Gemma-3* with *Prompt 1* and *Prompt 3* across multiple datasets. Improvement is $\Delta\text{EER} = \text{Prompt 1} - \text{Prompt 3}$ (positive indicates lower error with *Prompt 3*).

Dataset	Subset	P1 EER (%)	P3 EER (%)	ΔEER (% points)
FRL	StyleGAN2	41.4	27.4	14.0
	WebMorph	23.5	12.9	10.6
	AMSL	38.7	25.1	13.6
	FaceMorpher	21.7	13.1	8.6
	OpenCV	19.1	13.3	5.8
MIPGAN-II		42.9	35.6	7.3
Greedy_greedy_dim		18.6	6.2	12.5
Average		29.4	19.1	10.3

Notes: ΔEER is computed as $\text{P1} - \text{P3}$; Positive values mean P3

improves over P1; *P1*=*Prompt 1*