2023 |
Peng, Bo; Sun, Xianyun; Wang, Caiyong; Wang, Wei; Dong, Jing; Sun, Zhenan; Zhang, Rongyu; Cong, Heng; Fu, Lingzhi; Wang, Hao; Zhang, Yusheng; Zhang, HanYuan; Zhang, Xin; Liu, Boyuan; Ling, Hefei; Dragar, Luka; Batagelj, Borut; Peer, Peter; Struc, Vitomir; Zhou, Xinghui; Liu, Kunlin; Feng, Weitao; Zhang, Weiming; Wang, Haitao; Diao, Wenxiu DFGC-VRA: DeepFake Game Competition on Visual Realism Assessment Proceedings Article In: IEEE International Joint Conference on Biometrics (IJCB 2023), pp. 1-9, Ljubljana, Slovenia, 2023. Abstract | Links | BibTeX | Tags: competition IJCB, deepfake detection, deepfakes, face, realism assessment @inproceedings{Deepfake_comp2023, This paper presents the summary report on the DeepFake Game Competition on Visual Realism Assessment (DFGCVRA). Deep-learning based face-swap videos, also known as deepfakes, are becoming more and more realistic and deceiving. The malicious usage of these face-swap videos has caused wide concerns. There is a ongoing deepfake game between its creators and detectors, with the human in the loop. The research community has been focusing on the automatic detection of these fake videos, but the assessment of their visual realism, as perceived by human eyes, is still an unexplored dimension. Visual realism assessment, or VRA, is essential for assessing the potential impact that may be brought by a specific face-swap video, and it is also useful as a quality metric to compare different face-swap methods. This is the third edition of DFGC competitions, which focuses on the new visual realism assessment topic, different from previous ones that compete creators versus detectors. With this competition, we conduct a comprehensive study of the SOTA performance on the new task. We also release our MindSpore codes to fur- *Jing Dong (jdong@nlpr.ia.ac.cn) is the corresponding author. ther facilitate research in this field (https://github. com/bomb2peng/DFGC-VRA-benckmark). |
Das, Abhijit; Atreya, Saurabh K; Mukherjee, Aritra; Vitek, Matej; Li, Haiqing; Wang, Caiyong; Guangzhe, Zhao; Boutros, Fadi; Siebke, Patrick; Kolf, Jan Niklas; Damer, Naser; Sun, Ye; Hexin, Lu; Aobo, Fab; Sheng, You; Nathan, Sabari; Ramamoorthy, Suganya; S, Rampriya R; G, Geetanjali; Sihag, Prinaka; Nigam, Aditya; Peer, Peter; Pal, Umapada; Struc, Vitomir Sclera Segmentation and Joint Recognition Benchmarking Competition: SSRBC 2023 Proceedings Article In: IEEE International Joint Conference on Biometrics (IJCB 2023), pp. 1-10, Ljubljana, Slovenia, 2023. Abstract | Links | BibTeX | Tags: biometrics, competition IJCB, computer vision, deep learning, sclera, sclera segmentation @inproceedings{SSBRC2023, This paper presents the summary of the Sclera Segmentation and Joint Recognition Benchmarking Competition (SSRBC 2023) held in conjunction with IEEE International Joint Conference on Biometrics (IJCB 2023). Different from the previous editions of the competition, SSRBC 2023 not only explored the performance of the latest and most advanced sclera segmentation models, but also studied the impact of segmentation quality on recognition performance. Five groups took part in SSRBC 2023 and submitted a total of six segmentation models and one recognition technique for scoring. The submitted solutions included a wide variety of conceptually diverse deep-learning models and were rigorously tested on three publicly available datasets, i.e., MASD, SBVPI and MOBIUS. Most of the segmentation models achieved encouraging segmentation and recognition performance. Most importantly, we observed that better segmentation results always translate into better verification performance. |
2020 |
Vitek, M.; Das, A.; Pourcenoux, Y.; Missler, A.; Paumier, C.; Das, S.; Ghosh, I. De; Lucio, D. R.; Jr., L. A. Zanlorensi; Menotti, D.; Boutros, F.; Damer, N.; Grebe, J. H.; Kuijper, A.; Hu, J.; He, Y.; Wang, C.; Liu, H.; Wang, Y.; Sun, Z.; Osorio-Roig, D.; Rathgeb, C.; Busch, C.; Tapia, J.; Valenzuela, A.; Zampoukis, G.; Tsochatzidis, L.; Pratikakis, I.; Nathan, S.; Suganya, R.; Mehta, V.; Dhall, A.; Raja, K.; Gupta, G.; Khiarak, J. N.; Akbari-Shahper, M.; Jaryani, F.; Asgari-Chenaghlu, M.; Vyas, R.; Dakshit, S.; Dakshit, S.; Peer, P.; Pal, U.; Štruc, V. SSBC 2020: Sclera Segmentation Benchmarking Competition in the Mobile Environment Proceedings Article In: International Joint Conference on Biometrics (IJCB 2020), pp. 1–10, 2020. Abstract | Links | BibTeX | Tags: biometrics, competition IJCB, ocular, sclera, segmentation, SSBC @inproceedings{SSBC2020, The paper presents a summary of the 2020 Sclera Segmentation Benchmarking Competition (SSBC), the 7th in the series of group benchmarking efforts centred around the problem of sclera segmentation. Different from previous editions, the goal of SSBC 2020 was to evaluate the performance of sclera-segmentation models on images captured with mobile devices. The competition was used as a platform to assess the sensitivity of existing models to i) differences in mobile devices used for image capture and ii) changes in the ambient acquisition conditions. 26 research groups registered for SSBC 2020, out of which 13 took part in the final round and submitted a total of 16 segmentation models for scoring. These included a wide variety of deep-learning solutions as well as one approach based on standard image processing techniques. Experiments were conducted with three recent datasets. Most of the segmentation models achieved relatively consistent performance across images captured with different mobile devices (with slight differences across devices), but struggled most with low-quality images captured in challenging ambient conditions, i.e., in an indoor environment and with poor lighting. |