2025 |
Soltandoost, Elahe; Plesh, Richard; Schuckers, Stephanie; Peer, Peter; Struc, Vitomir Extracting Local Information from Global Representations for Interpretable Deepfake Detection Proceedings Article In: Proceedings of IEEE/CFV Winter Conference on Applications in Computer Vision - Workshops (WACV-W) 2025, pp. 1-11, Tucson, USA, 2025. Abstract | Links | BibTeX | Tags: CNN, deepfake DAD, deepfakes, faceforensics++, media forensics, xai @inproceedings{Elahe_WACV2025, The detection of deepfakes has become increasingly challenging due to the sophistication of manipulation techniques that produce highly convincing fake videos. Traditional detection methods often lack transparency and provide limited insight into their decision-making processes. To address these challenges, we propose in this paper a Locally-Explainable Self-Blended (LESB) DeepFake detector that in addition to the final fake-vs-real classification decision also provides information, on which local facial region (i.e., eyes, mouth or nose) contributed the most to the decision process.~At the heart of the detector is a novel Local Feature Discovery (LFD) technique that can be applied to the embedding space of pretrained DeepFake detectors and allows identifying embedding space directions that encode variations in the appearance of local facial features. We demonstrate the merits of the proposed LFD technique and LESB detector in comprehensive experiments on four popular datasets, i.e., Celeb-DF, DeepFake Detection Challenge, Face Forensics in the Wild and FaceForensics++, and show that the proposed detector is not only competitive in comparison to strong baselines, but also exhibits enhanced transparency in the decision-making process by providing insights on the contribution of local face parts in the final detection decision. |
2024 |
Brodarič, Marko; Peer, Peter; Štruc, Vitomir Cross-Dataset Deepfake Detection: Evaluating the Generalization Capabilities of Modern DeepFake Detectors Proceedings Article In: Proceedings of the 27th Computer Vision Winter Workshop (CVWW), pp. 1-10, 2024. Abstract | Links | BibTeX | Tags: data integrity, deepfake, deepfake detection, deepfakes, difussion, face, faceforensics++, media forensics @inproceedings{MarkoCVWW, Due to the recent advances in generative deep learning, numerous techniques have been proposed in the literature that allow for the creation of so-called deepfakes, i.e., forged facial images commonly used for malicious purposes. These developments have triggered a need for effective deepfake detectors, capable of identifying forged and manipulated imagery as robustly as possible. While a considerable number of detection techniques has been proposed over the years, generalization across a wide spectrum of deepfake-generation techniques still remains an open problem. In this paper, we study a representative set of deepfake generation methods and analyze their performance in a cross-dataset setting with the goal of better understanding the reasons behind the observed generalization performance. To this end, we conduct a comprehensive analysis on the FaceForensics++ dataset and adopt Gradient-weighted Class Activation Mappings (Grad-CAM) to provide insights into the behavior of the evaluated detectors. Since a new class of deepfake generation techniques based on diffusion models recently appeared in the literature, we introduce a new subset of the FaceForensics++ dataset with diffusion-based deepfake and include it in our analysis. The results of our experiments show that most detectors overfit to the specific image artifacts induced by a given deepfake-generation model and mostly focus on local image areas where such artifacts can be expected. Conversely, good generalization appears to be correlated with class activations that cover a broad spatial area and hence capture different image artifacts that appear in various part of the facial region. |