2025 |
Tomašević, Darian; Boutros, Fadi; Lin, Chenhao; Damer, Naser; Štruc, Vitomir; Peer, Peter ID-Booth: Identity-consistent Face Generation with Diffusion Models Proceedings Article In: IEEE International Conference on Automatic Face and Gesture Recognition 2025, pp. 1-10, 2025. Abstract | Links | BibTeX | Tags: data synthesis, difussion, face, face images, face recognition, generative AI, generative models, synthetic data @inproceedings{DarianFG2025, Recent advances in generative modeling have enabled the generation of high-quality synthetic data that is applicable in a variety of domains, including face recognition. Here, state-of-the-art generative models typically rely on conditioning and fine-tuning of powerful pretrained diffusion models to facilitate the synthesis of realistic images of a desired identity. Yet, these models often do not consider the identity of subjects during training, leading to poor consistency between generated and intended identities. In contrast, methods that employ identity-based training objectives tend to overfit on various aspects of the identity, and in turn, lower the diversity of images that can be generated. To address these issues, we present in this paper a novel generative diffusion-based framework, called ID-Booth. ID-Booth consists of a denoising network responsible for data generation, a variational auto-encoder for mapping images to and from a lower-dimensional latent space and a text encoder that allows for prompt-based control over the generation procedure. The framework utilizes a novel triplet identity training objective and enables identity-consistent image generation while retaining the synthesis capabilities of pretrained diffusion models. Experiments with a state-of-the-art latent diffusion model and diverse prompts reveal that our method facilitates better intra-identity consistency and inter-identity separability than competing methods, while achieving higher image diversity. In turn, the produced data allows for effective augmentation of small-scale datasets and training of better-performing recognition models in a privacy-preserving manner. The source code for the ID-Booth framework is publicly available at https://github.com/dariant/ID-Booth. |
2024 |
Babnik, Žiga; Peer, Peter; Štruc, Vitomir eDifFIQA: Towards Efficient Face Image Quality Assessment based on Denoising Diffusion Probabilistic Models Journal Article In: IEEE Transactions on Biometrics, Behavior, and Identity Science (TBIOM), pp. 1-16, 2024, ISSN: 2637-6407. Abstract | Links | BibTeX | Tags: biometrics, CNN, deep learning, DifFIQA, difussion, face, face image quality assesment, face recognition, FIQA @article{BabnikTBIOM2024, State-of-the-art Face Recognition (FR) models perform well in constrained scenarios, but frequently fail in difficult real-world scenarios, when no quality guarantees can be made for face samples. For this reason, Face Image Quality Assessment (FIQA) techniques are often used by FR systems, to provide quality estimates of captured face samples. The quality estimate provided by FIQA techniques can be used by the FR system to reject samples of low-quality, in turn improving the performance of the system and reducing the number of critical false-match errors. However, despite steady improvements, ensuring a good trade-off between the performance and computational complexity of FIQA methods across diverse face samples remains challenging. In this paper, we present DifFIQA, a powerful unsupervised approach for quality assessment based on the popular denoising diffusion probabilistic models (DDPMs) and the extended (eDifFIQA) approach. The main idea of the base DifFIQA approach is to utilize the forward and backward processes of DDPMs to perturb facial images and quantify the impact of these perturbations on the corresponding image embeddings for quality prediction. Because of the iterative nature of DDPMs the base DifFIQA approach is extremely computationally expensive. Using eDifFIQA we are able to improve on both the performance and computational complexity of the base DifFIQA approach, by employing label optimized knowledge distillation. In this process, quality information inferred by DifFIQA is distilled into a quality-regression model. During the distillation process, we use an additional source of quality information hidden in the relative position of the embedding to further improve the predictive capabilities of the underlying regression model. By choosing different feature extraction backbone models as the basis for the quality-regression eDifFIQA model, we are able to control the trade-off between the predictive capabilities and computational complexity of the final model. We evaluate three eDifFIQA variants of varying sizes in comprehensive experiments on 7 diverse datasets containing static-images and a separate video-based dataset, with 4 target CNN-based FR models and 2 target Transformer-based FR models and against 10 state-of-the-art FIQA techniques, as well as against the initial DifFIQA baseline and a simple regression-based predictor DifFIQA(R), distilled from DifFIQA without any additional optimization. The results show that the proposed label optimized knowledge distillation improves on the performance and computationally complexity of the base DifFIQA approach, and is able to achieve state-of-the-art performance in several distinct experimental scenarios. Furthermore, we also show that the distilled model can be used directly for face recognition and leads to highly competitive results. |
Brodarič, Marko; Peer, Peter; Štruc, Vitomir Cross-Dataset Deepfake Detection: Evaluating the Generalization Capabilities of Modern DeepFake Detectors Proceedings Article In: Proceedings of the 27th Computer Vision Winter Workshop (CVWW), pp. 1-10, 2024. Abstract | Links | BibTeX | Tags: data integrity, deepfake, deepfake detection, deepfakes, difussion, face, faceforensics++, media forensics @inproceedings{MarkoCVWW, Due to the recent advances in generative deep learning, numerous techniques have been proposed in the literature that allow for the creation of so-called deepfakes, i.e., forged facial images commonly used for malicious purposes. These developments have triggered a need for effective deepfake detectors, capable of identifying forged and manipulated imagery as robustly as possible. While a considerable number of detection techniques has been proposed over the years, generalization across a wide spectrum of deepfake-generation techniques still remains an open problem. In this paper, we study a representative set of deepfake generation methods and analyze their performance in a cross-dataset setting with the goal of better understanding the reasons behind the observed generalization performance. To this end, we conduct a comprehensive analysis on the FaceForensics++ dataset and adopt Gradient-weighted Class Activation Mappings (Grad-CAM) to provide insights into the behavior of the evaluated detectors. Since a new class of deepfake generation techniques based on diffusion models recently appeared in the literature, we introduce a new subset of the FaceForensics++ dataset with diffusion-based deepfake and include it in our analysis. The results of our experiments show that most detectors overfit to the specific image artifacts induced by a given deepfake-generation model and mostly focus on local image areas where such artifacts can be expected. Conversely, good generalization appears to be correlated with class activations that cover a broad spatial area and hence capture different image artifacts that appear in various part of the facial region. |