2021 |
Peter Rot Blaz Meden, Philipp Terhorst Privacy-Enhancing Face Biometrics: A Comprehensive Survey Journal Article In: IEEE Transactions on Information Forensics and Security, vol. 16, pp. 4147-4183, 2021. Abstract | Links | BibTeX | Tags: biometrics, deidentification, face analysis, face deidentification, face recognition, face verification, FaceGEN, privacy, privacy protection, privacy-enhancing techniques, soft biometric privacy @article{TIFS_PrivacySurveyb, Biometric recognition technology has made significant advances over the last decade and is now used across a number of services and applications. However, this widespread deployment has also resulted in privacy concerns and evolving societal expectations about the appropriate use of the technology. For example, the ability to automatically extract age, gender, race, and health cues from biometric data has heightened concerns about privacy leakage. Face recognition technology, in particular, has been in the spotlight, and is now seen by many as posing a considerable risk to personal privacy. In response to these and similar concerns, researchers have intensified efforts towards developing techniques and computational models capable of ensuring privacy to individuals, while still facilitating the utility of face recognition technology in several application scenarios. These efforts have resulted in a multitude of privacy--enhancing techniques that aim at addressing privacy risks originating from biometric systems and providing technological solutions for legislative requirements set forth in privacy laws and regulations, such as GDPR. The goal of this overview paper is to provide a comprehensive introduction into privacy--related research in the area of biometrics and review existing work on textit{Biometric Privacy--Enhancing Techniques} (B--PETs) applied to face biometrics. To make this work useful for as wide of an audience as possible, several key topics are covered as well, including evaluation strategies used with B--PETs, existing datasets, relevant standards, and regulations and critical open issues that will have to be addressed in the future. |
2018 |
Meden, Blaz; Peer, Peter; Struc, Vitomir Selective Face Deidentification with End-to-End Perceptual Loss Learning Proceedings Article In: 2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), pp. 1–7, IEEE 2018. Abstract | Links | BibTeX | Tags: deidentification, face, face deidentification, privacy protection @inproceedings{meden2018selective, Privacy is a highly debatable topic in the modern technological era. With the advent of massive video and image data (which in a lot of cases contains personal information on the recorded subjects), there is an imminent need for efficient privacy protection mechanisms. To this end, we develop in this work a novel Face Deidentification Network (FaDeNet) that is able to alter the input faces in such a way that automated recognition fail to recognize the subjects in the images, while this is still possible for human observers. FaDeNet is based an encoder-decoder architecture that is trained to auto-encode the input image, while (at the same time) minimizing the recognition performance of a secondary network that is used as an socalled identity critic in FaDeNet. We present experiments on the Radbound Faces Dataset and observe encouraging results. |
0000 |
Peter Rot Blaz Meden, Philipp Terhorst Privacy-Enhancing Face Biometrics: A Comprehensive Survey Journal Article In: IEEE Transactions on Information Forensics and Security, vol. vol. 16, pp. 4147-4183, 0000. Abstract | Links | BibTeX | Tags: B-PETs, biometrics, DEID, deidentification, face deidentification, face recognition, FaceGEN, overview, privacy, privacy-enhancing techniques, survey @article{TIFS_PrivacySurvey, Biometric recognition technology has made significant advances over the last decade and is now used across a number of services and applications. However, this widespread deployment has also resulted in privacy concerns and evolving societal expectations about the appropriate use of the technology. For example, the ability to automatically extract age, gender, race, and health cues from biometric data has heightened concerns about privacy leakage. Face recognition technology, in particular, has been in the spotlight, and is now seen by many as posing a considerable risk to personal privacy. In response to these and similar concerns, researchers have intensified efforts towards developing techniques and computational models capable of ensuring privacy to individuals, while still facilitating the utility of face recognition technology in several application scenarios. These efforts have resulted in a multitude of privacy--enhancing techniques that aim at addressing privacy risks originating from biometric systems and providing technological solutions for legislative requirements set forth in privacy laws and regulations, such as GDPR. The goal of this overview paper is to provide a comprehensive introduction into privacy--related research in the area of biometrics and review existing work on textit{Biometric Privacy--Enhancing Techniques} (B--PETs) applied to face biometrics. To make this work useful for as wide of an audience as possible, several key topics are covered as well, including evaluation strategies used with B--PETs, existing datasets, relevant standards, and regulations and critical open issues that will have to be addressed in the future. |